MODEL: OQAS – HDA
Analysesysteem voor optische kwaliteit - High Definition Analyzer
HANDELSMERK: HD Analyzer™

TOEPASSELIJKE ONDERDELEN:
Kinsteun (Type B)

CODE: 2
REV.: 5
2015/12
AFGEDRUKT IN SPANJE
Inhoudsopgave

WAARSCHUWINGEN .. 1
VOORZORGSMAATREGELEN .. 3
BEPERKTE GARANTIE ... 4

1. INLEIDING ... 5
 1.1. ALGEMENE BESCHRIJVING .. 5
 1.1.1. Dubbele toevoertechniek ... 5
 1.1.2. Wat is OSI? ... 7
 1.1.3. Wat is MTF? ... 7
 1.2. FUNCTIES ... 8
 1.3. TOEPASSINGEN ... 9
 1.4. SPECIFICATIES VAN DE HD ANALYZER™ ... 10
 1.4.1. Hardwarespecificaties .. 10
 1.4.2. Software-specificaties .. 11
 1.4.3. Accessoires ... 12
 1.4.3.1. Computer (pc of laptop) ... 12
 1.4.3.2. Extra instrument voor “Snelle Controle”-proces 12
 1.4.4. Fabricagenormen ... 13
 1.5. NAUWKEURIGHEID GEBRUIKERSHANDLEIDING 13

2. HD ANALYZER™-HARDWARE INSTELLEN .. 14
 2.1. HARDWARE UITPAKKEN, CONTROLEREN EN INSTALLEREN 14
 2.2. ONDERHOUD ... 16

3. FUNCTIES VAN DE HD ANALYZER™ .. 18
 3.1. GEBRUIK VAN DE SOFTWARE ZONDER DE HARDWARE 18
 3.2. PAY-PER-PATIENT-MODUS ... 18
 3.3. AAN DE SLAG ... 19
 3.4. STARTMENU .. 21
 3.5. DATABASE .. 24
 3.5.1. New (Nieuw) ... 25
 3.5.2. Modify (Wijzigen) .. 26
 3.5.3. Verwijderen: patiënt/meting .. 27
 3.5.4. Resultaten ... 27
 3.5.5. Compare (Vergelijken) ... 29
 3.6. METINGEN .. 29
 3.6.1. Gegevens verkrijgen .. 31
 3.6.2. Objectieve refractie .. 36
3.6.3. Soorten meting ... 38
 3.6.3.1. Verstrooingsmeter en optische kwaliteit 38
 3.6.3.2. Pseudoaccommodatie ... 40
 3.6.3.3. Traanvochtanalyse .. 42
3.6.4. Resultaten controleren ... 44
 3.6.4.1. Verstrooingsmeter en optische kwaliteit 45
 3.6.4.2. Pseudoaccommodatie ... 56
 3.6.4.3. Traanvochtanalyse .. 57
 3.6.4.4. Schermen voor het vergelijken van resultaten 59
3.6.5. Purkinje-meting ... 62
 3.6.5.1. Invoeren van subjectieve refractie 62
 3.6.5.2. Selecteren van de Purkinje-optie 63
 3.6.5.3. Beweg ver weg en centreer het oog van de patiënt 63
 3.6.5.4. Selecteer de gewenste optie 64
 3.6.5.5. Scherpstellen met behulp van aanwijspijltjes 65
 3.6.5.6. Automatisch opslaan van afbeeldingen 69
 3.6.5.7. Een beeld bevestigen ... 73
 3.6.5.8. Vastleggen en bevestigen van nog vier beelden 74
 3.6.5.9. Bevestigen van de eindresultaten 75
3.6.6. Afdrukken en exporteren van het rapport van een resultaat 77
3.7. LICENTIEBEHEER .. 84
3.8. INSTELLINGEN ... 87
 3.8.1. Voor gebruikers zichtbare parameters: 88
 3.8.2. Knoppen voor instellingen: ... 89
 3.8.3.1. Scherpstellen ... 90
 3.8.3.2. Nieuwe focuswaarden zoeken 93
 3.8.3.3. Laserspot centreren ... 94
 3.8.4. Hardware instellingen ... 95
3.9. BACK-UPS MAKEN .. 96
4. VOORBEELDEN VAN METINGEN .. 97
 4.1. NORMAAL OOG ... 97
 4.2. OOG MET STAAR ... 98
 4.3. OOG NA LASIK-BEHANDELING 99
5. FOUTOPLOSSING ... 102
6. FABRIKANT ... 106
7. REGELGEVING INFORMATIE ... 107
8. BIJLAGE A .. 108
 8.1. PATIENTS_TABLE (patiëntentabel) 108
 8.2. ACQUISITIONS_TABLE (metingentabel) 109
 8.3. SYMBOLEN ... 114
9. ELEKTROMAGNETISCHE IMMUNITEIT ¡ERROR! MARCADOR NO DEFINIDO.
WAARSCHUWINGEN

LEES DE GEBRUIKSaanwijzing voordat u gebruikmaakt van deze apparatuur.

DIT APPARAAT MOET WORDEN BEDIEND MET DE MEEGELEVERDE NETVOEDING.

OM BRAND OF EEN ELEKTRISCHE SCHOK TE VOORKOMEN, MAG DE HD ANALYZER™ NIET WORDEN BLOOTGESTELD AAN REGEN OF VOCHT.

DIT APPARAAT MAG NIET WORDEN GEPLAATST OP EEN MANIER WAAROP TOEGANG TOT DE STROOMAANSLUITING WORDT GEHINDERD.

PROBEER DE BEHUIZING VAN DE EENHEID NIET TE VERWIJDEREN EN/OF DE EENHEID TE WIJZIGEN, ANDERS VERVALT DE GARANTIE.

ALLEEN PERSONEEL DAT VERTROUWD IS MET OOGHEELKUNDIGE DIAGNOSTIEK EN CONTROLEAPPARATUUR MAG DIT APPARAAT BEDIENEN (OOGARTS, OPTICIEN, ENZ...).

ER MOET EEN SNELLE CONTROLE (3.8.3 “Snelle Controle”) UITGEVOERD WORDEN NA DE EERSTE INSTALLATIE EN NA HET VERPLAATSEN VAN HET INSTRUMENT NAAR EEN NIEUWE WERKPLEK.

DIT INSTRUMENT MOET JAARLIJKS GEKALIBREERD WORDEN VOOR EEN GOEDE WERKING ERVAN.

HOUD DIT APPARAAT DROOG.

ALLEEN VOOR GEbruik BINNENSHUIS. NIET BESTEMD VOOR GEbruik BUITENSHUIS.

NIET GESCHIKT VOOR GEbruik IN ONTVLAMBARE OMGEVINGEN.
SCHAKEL HET APPARAAT UIT EN VERWIJDER DE STEKKER UIT HET STOPCONTACT ALS HET APPARAAT NIET WORDT GEBRUIKT.

DIT APPARAAT BEVAT GEEN ONDERDELEN DIE DOOR DE GEBRUIKER KUNNEN WORDEN GEREPAREERD. NEEM CONTACT OP MET DE TECHNISCHE ONDERSTEUNING.

DIT APPARAAT IS NIET WATER- OF SPATBESTENDIG. ALS VOCHT, WATER OF VLOEISTOF IN HET APPARAAT KOMT, DIEN T U ONMIDDELLIJK DE STEKKER VAN HET APPARAAT UIT HET STOPCONTACT TE VERWIJDEREN EN CONTACT OP TE NEMEN MET DE TECHNISCHE ONDERSTEUNING VOORDAT U HET APPARAAT OPNIEUW GEBRUIKT.

ALS HET APPARAAT AAN DE BUITENKANT BESCHADIGD RAAKT, DIEN T U CONTACT OP TE NEMEN MET DE TECHNISCHE SERVICE VOORDAT U HET APPARAAT OPNIEUW GEBRUIKT.
VOORZORGSMAATREGELEN

Dit instrument moet worden aangesloten op het elektriciteitsnetwerk. Neem standaard, huishoudelijke voorzorgsmaatregelen.

Als het instrument niet meer normaal werkt, worden mogelijk verschillende foutberichten weergegeven op het computerscherm. Probeer in dit geval het instrument niet te repareren. Neem contact op met de technische ondersteuning.

Als het instrument niet meer normaal werkt (er worden foutberichten weergegeven op het computerscherm) vanwege blootstelling (in redelijk voorzienbare omstandigheden) aan bijvoorbeeld magnetische velden, externe elektrische invloeden, elektrostatische ontlading, druk of drukschommelingen, acceleratie, en thermische ontstekingsbronnen, probeer het instrument dan niet te repareren. Neem contact op met de technische ondersteuning.

Neem contact op met VISIOMETRICS als u hulp nodig hebt.
BEPERKTE GARANTIE

VISIOMETRICS garandeert dat deze HD Analyzer™ vrij is van defecten in materiaal en vakmanschap gedurende één jaar vanaf de oorspronkelijke aankoopdatum. Deze garantie dekt defecten of schade als gevolg van defecten in materiaal of vakmanschap, die kunnen optreden bij normaal gebruik. Deze garantie dekt geen schade of defecten die het gevolg zijn van transport, verkeerde bediening, misbruik, verkeerd gebruik of wijziging.

VISIOMETRICS schat de levensduur van het apparaat in op 5 jaar. Bij normaal gebruik van het instrument gedurende een periode van 5 jaar ligt de slijtage van de dynamische elementen van het apparaat onder de 15%.

Een Return Material Authorization-nummer (RMA) is vereist voorafgaand aan het terugsturen van VISIOMETRICS-producten voor onderhoud of vervanging.

Dit gepatenteerde document mag niet worden gereproduceerd of gefotokopieerd zonder toestemming van VISIOMETRICS. VISIOMETRICS biedt geen garantie en aanvaardt geen aansprakelijkheid voor eventuele fouten die in dit document kunnen voorkomen.

VISIOMETRICS behoudt zich het recht voor om wijzigingen aan te brengen zonder aankondiging of verplichting.

Bel voor onmiddellijke technische ondersteuning naar (+34) 935.824.501 of stuur een e-mail naar technicalservice@visiometrics.com.
Gebruikershandleiding HD Analyzer™

Hoofdstuk 1: Inleiding

1. **INLEIDING**

1.1. **ALGEMENE BESCHRIJVING**

Vanwege het belang en de noodzaak de visuele kwaliteit objectief te kunnen meten, heeft VISIOMETRICS de HD Analyzer™ ontwikkeld, een nieuw instrument gebaseerd op de dubbele toevoertechniek dat een objectieve klinische evaluatie van de optische kwaliteit van het oog biedt.

Een lichtbron in de vorm van een punt wordt afgebeeld op het netvlies. Na retinale reflectie, passeert het licht twee keer door de oculaire media. De HD Analyzer™ analyseert de grootte en vorm van de gereflecteerde lichtplek.

Beelden van de HD Analyzer™ bevatten alle informatie over de optische kwaliteit van het oog, met inbegrip van alle hogere orde aberraties en verstrooid licht, die beide doorgaans worden gemist door de meeste aberrometrische technieken. Deze hogere orde aberraties kunnen van grote invloed zijn op refractieve chirurgie, net zoals verstrooid licht in het ouder wordende oog.

Met de HD Analyzer™ kunnen metingen worden verricht in een breed scala van klinische situaties. Duidelijk is dat een van de meest veelbelovende toepassingsgebieden voor de HD Analyzer™ cataractdetectie en classificatie en refractieve chirurgie is. Verder zijn de functionaliteiten voor de evaluatie van pseudoaccommodatie en de geleidelijke degradatie van traanvocht zeer handig voor het onderzoek naar presbyopie en het droge ogen syndroom.

De HD Analyzer™ biedt controle- en acquisitiessoftware. Tegelijkertijd zijn er nog extra voordelen: eenvoudig om mee te werken, intuïtieve gebruikersinterface en realtime controle.

1.1.1. **Dubbele toevoertechniek**

Afbeelding 1 toont een afbeelding van een systeem met dubbele toevoer, gelijk aan dat van de HD Analyzer™.
De lichtbron is een laserdiode van 780 nm. De lichtbundel wordt gefilterd en gecollimeerd op L1. Nadat de bundel wordt gereflecteerd door een bundelsplitter (BS), passeert de bundel twee achromatische doubletlenzen L2 en L3, en door de mobiele focuscorrector, met daaraan twee spiegels verbonden. Sferische refractie van het oog van de patiënt wordt gecorrigeerd door de optische paden tussen L2 en L3 aan te passen.

Afbeelding 1. Schema van de dubbele toevoer

Het oog vormt het beeld van de puntbron op het netvlies. Het optische pad van de laserbron naar het netvlies vormt de eerste toevoer van dit systeem.

De dubbele toevoer wordt bepaald door het licht dat op weg is van het netvlies naar de CCD-camera (luchtfoto of dubbele toevoer). Deze route begint met licht dat wordt gereflecteerd op het netvlies in een vast patroon door het verspreidend gedrag van het netvlies. Het gereflecteerde licht gaat door de twee doubletlenzen en door de BS. Licht dat door de BS wordt gestuurd, ontmoet de tweede
kunstmatige pupil (AP2), die is geconjugeerd met het pupilvlak van het oog. Deze pupil is variabel en werkt als effectieve uittredepupil als AP2 kleiner is dan de natuurlijke pupil. De effectieve uittredepupil, de AP2 of de natuurlijke pupil, is kleiner. Aangezien de natuurlijke pupil niet statisch is - deze verwijdt en vernauwt - wordt het aanbevolen AP2 iets kleiner in te stellen dan de natuurlijke pupil. Een doelbeeld focust het luchtbeeld op een CCD-camera. Metingen kunnen worden verricht met verschillende AP2-diameters.

1.1.2. Wat is OSI?

OSI = Objectieve verstrooiingsindex

OSI is een parameter voor een objectieve beoordeling van intraoculair verstrooid licht. Het wordt berekend door het evalueren van de hoeveelheid licht op de omtrek van het tweetrapsbeeld ten opzichte van de hoeveelheid licht in het midden ervan. Op deze manier geldt dat hoe hoger de OSI-waarde is, hoe hoger het niveau aan intraoculaire verstrooiing is.

Het is de enige parameter waarmee intraoculair verstrooid licht objectief kan worden gekwantificeerd. Het is nuttig in alle klinische situaties waarin verstrooid licht belangrijk kan zijn: cataractontwikkeling en -chirurgie, refractieve chirurgie, intraoculaire lens, veroudering, droge ogensyndroom.

OSI wordt gebruikt voor een nieuwe objectieve classificatie van de ontwikkeling van staar. Voor ogen met een normale mate van verstrooiing (jonge ogen) is de OSI-waarde lager dan 0,5. Voor ogen die staar aan het ontwikkelen zijn, ligt de OSI-waarde tussen 1,5 end 4. Voor ogen met een rijpe staar is de OSI hoger dan 4.

1.1.3. Wat is MTF?

MTF = Modulation Transfer Function (modulatie-overdrachtsfunctie)

MTF is een functie die ons in staat stelt om de mate van detail van een beeld na het passeren van een optisch systeem te evalueren, dat wil zeggen het evaluateert
de verhouding tussen het contrast in het beeld dat wordt gevormd door het systeem en het contrast in het originele beeld. In het geval van het oog vertegenwoordigt de MTF het verlies aan contrast van het werkelijke beeld na het passeren door het oog.

In elk optisch systeem, bijvoorbeeld in het menselijk oog, is de contrastverlaging groter voor hoge ruimtelijke frequenties (fijne details op een afbeelding). Op deze manier is de MTF een functie van de ruimtelijke frequentie.

Wanneer contrast in de afbeelding hetzelfde is als in het object, is de MTF-waarde maximaal. Deze waarde kan alleen worden verkregen voor een ruimtelijke frequentie van nul, dat wil zeggen wanneer het object dat bekeken wordt een uniform vlak is, zonder banden, randen en geen intensiteitsvariaties. Naarmate de ruimtelijke frequentie toeneemt, neemt MTF af omdat het contrast in het beeld lager wordt dan in het object.

MTF verandert ook met de pupildiameter. Daarom is het belangrijk om de pupildiameter van een meting te overwegen voordat deze met een andere meting wordt vergeleken. Deze waarde is de waarde die wordt ingesteld als kunstmatige pupil voordat de meting wordt uitgevoerd, als deze kleiner is dan de pupill van de patiënt. Omdat de pupil van de patiënt verwijd en vernauwt, raden we aan metingen te verrichten met een kunstmatige pupil die enigszins kleiner is ingesteld dan de natuurlijke pupil, zodat metingen kunnen worden gereproduceerd.

1.2. FUNCTIES

- Kwantitatieve en objectieve evaluatie van intraoculair verstrooid licht.
- Kwantitatieve en objectieve evaluatie van de optische kwaliteit van het oog.
- Kwantitatieve en objectieve evaluatie van het verlies van de optische kwaliteit vanwege traanvochtafname.
- Kwantitatieve en objectieve beoordeling van pseudoaccommodatie.
- Kwalitatieve evaluatie van de optische kwaliteit van het oog door middel van twee- en driedimensionale kaarten van het beeld van de dubbele
toevoer door het netvlies. Ook wordt een simulatie geboden van het beeld van een scène geprojecteerd op het netvlies.

- Beoordeling van optische aspositie ten opzichte van het midden van de pupil.
- Wanneer een KAMRA™-implantaat wordt geïmplanteerd, beoordeling van de implantaatpositie ten opzichte van het midden van de pupil en de optische as.
- Hulpmiddelen voor een optimale visualisatie en kwantificering van de beelden, zoals zoom, beeldrotatie, profielen en metingen.
- Een handige en gebruiksvriendelijke patiëntendatabase.
- Afdrukbare rapporten van de metingsparameters en -resultaten.
- Gemakkelijke verwerving en bewerking van de beelden

1.3. TOEPASSINGEN

- Evaluatie van de mate van intraoculaire verstrooiing (OSI) voor de vroege opsporing van staar of voor de bepaling van de mate van rijkheid.
- Objectieve meting van halo's en verblinding.
- Vergelijking van metingen vóór en na staar en refractieve chirurgie.
- Evaluatie van traanvochtkwaliteit, vooral bij patiënten met droge ogen.
- Objectieve meting van de amplitude van pseudoaccommodatiebereik.
- Diagnose van pathologieën.
- Nauwkeurige metingen van de oculaire MTF (modulatie-overdrachtsfunctie) in alle situaties (overschat door aberrometers wanneer sprake is van verstrooiing, net als bij staarpatiënten).
- Het effect aantonen van oculaire aberraties in gezichtsscherpte (met inbegrip van die van de hogere orde die meestal niet worden gemeten door standaardaberrometers).
- Het effect aantonen van de traanvochtafname op de kwaliteit van het beeld op het netvlies.
- Beoordeling van Purkinje-beelden van een oog zonder KAMRA™-implantaat geïmplanteerd, waarbij de exacte positie van de optische as wordt opgespoord in verhouding tot het midden van de pupil en waarmee
de vereiste positie voor de implantatie van het juiste KAMRA™-implantaat kan worden bepaald.

- Beoordeling van Purkinjebeelden van een oog met een KAMRA™-implantaat geïmplanteerd, waarbij de exacte positie van het geïmplanteerde implantaat wordt opgespoord in verhouding tot de optische as van het oog, zodat kan worden gekwantificeerd hoe dicht het implantaat bij zijn optimale positie ligt (optische as van oog).

1.4. SPECIFICATIES VAN DE HD ANALYZER™

1.4.1. Hardwarespecificaties

- Type B
- Meetbereik: Min. +5 D tot -8 D S.E. (hogere afwijkingen waaronder astigmatisme kunnen worden geneutraliseerd met een extra lens)
 - Reproduceerbaarheid: +/- 0,25 D
 - Nauwkeurigheid: +/- 0,25 D
- Repetitiviteit dioptrische waarde beste scherpfsetting: ± 0,125 D van het gemiddelde
- Meting diameter natuurlijke pupil: Automatisch
 - Nauwkeurigheid: +/- 0,5 mm (voor een 8 mm pupil)
- Kunstmatige pupildiameter: 2 tot 7 mm
- Beeldopnametijd: 240 ms
- Golflengte laserdiode: 780 nm
- Selectie laservermogen: Automatisch
- Maximaal laservermogen op het pupilvlak: 2,8 mW
- Beste scherpstelling: Automatisch
- Fixatiedoel: landschap met huis
- XY-translatie: Joystick
- Afmetingen: 415 (l) x 350 (b) x 530 (h) mm
- Aanbevolen werkruiumte: 2,5 m²
- Gewicht: 20 kg
Hoofdstuk 1: Inleiding

- **Externe voeding:**
 - Input: 100-240 VAC, 50-60 Hz, max. 0,9 A
 - Output: 12 V DC, 3.0 A, 40 W

- **Operationele temperatuur en relatieve vochtigheid:** +10 °C to +35 °C en 30% tot 90%.
- **Opslagtemperatuur en relatieve vochtigheid:** -10 °C tot +55 °C en 10% tot 95%.
- **Transporttemperatuur en relatieve vochtigheid:** -40 °C tot +70 °C en 10% tot 95%.

![Klasse II dubbel geïsoleerd apparaat](image)

Klasse II dubbel geïsoleerd apparaat, heeft een dubbel vierkantsymbool, waarmee wordt aangegeven dat de apparatuur dubbel geïsoleerd is en dus niet hoeft te worden geaard.

Voor de Purkinjemeting:

- Selectie laservermogen: Automatisch of handmatig
- Optimale afstand tussen het oog van de patiënt en de HD Analyzer™ wordt groen omkaderd.
- Purkinjedetectie
 - Fout onder 142μm in meer dan 95% van de metingen.
- Detectie Purkinje-afwijking: KAMRA™-implantaat
 - Fout onder 142μm in meer dan 95% van de metingen.
- Detectie pupilafwijking: KAMRA™-implantaat
 - Fout onder 142μm in meer dan 95% van de metingen.

1.4.2. Softwarespecificaties

- Met Pentium compatibele CPU van 1,6 MHz of hoger
- Minimaal 512 MB RAM aanbevolen, meer geheugen verbetert in het algemeen de prestaties
- USB 2.0-poort
1.4.3. Accessoires

1.4.3.1. Computer (pc of laptop)
Wordt gebruikt om de besturingssoftware van het apparaat uit te voeren. Minimale vereisten:
- Processor: 2,10 GHz, 3 MB
- Scherm: 39,6 cm (15,6 inch) HD (1366 x 768)
- Geheugen: 4 GB 1600 MHz DDR3 geheugen
- Harde schijf: 320 GB
- Besturingssysteem: Windows 7 Professional (64-bits)
- Poorten: 2 x USB 2.0

1.4.3.2. Extra instrument voor “Snelle Controle”-proces
Dit wordt gebruikt om de centrering van de laser- en focusparameters te controleren. Het gebruik ervan wordt uitgelegd in 3.8.3 “Snelle Controle”. Als u deze niet hebt, vraag er dan om bij uw leverancier.

Afbeelding 2. Extra instrument voor Snelle Controle
1.4.4. Fabricagenormen

1.5. NAUWKEURIGHEID GEBRUIKERSHANDLEIDING

Het kan gebeuren dat sommige schermen die in deze gebruiksaanwijzing worden afgebeeld niet exact overeenkomen met de schermen in uw software.

Kleine verschillen zijn het gevolg van verschillende instellingsopties.
2. HD ANALYZER™-HARDWARE INSTELLEN

2.1. HARDWARE UITPAKKEN, CONTROLEREN EN INSTALLEREN

Open de transportkist en controleer of alle apparatuur die nodig is om het systeem te bedienen onbeschadigd is aangekomen.

De kist bevat:

- HD Analyzer™-eenheid (HD Analyzer™-instrument)
- PC of laptop met specifiek geïnstalleerde hardware en software en klaar om het apparaat te bedienen.
- 15- of 17-inch flatscreen (alleen voor pc).
- Pc- of laptopdocumenten.
- Documenten van het apparaat en een korte handleiding voor het uitpakken en installeren van het apparaat.
- USB-kabel
- Externe voeding.
- Netsnoer

Op de volgende afbeeldingen wordt in het kort het uitpakproces uitgelegd. Zorg ervoor dat al het verpakkingsmateriaal en de droogmiddelzakken zijn verwijderd voordat u de HD Analyzer™ uit de kist haalt. We raden aan het apparaat door twee mensen op te laten tillen en te verplaatsen naar de voorbereide locatie, door het voetstuk goed vast te pakken.

Til de HD Analyzer™ nooit anders op dan alleen bij het voetstuk. Het draagbare deel van het apparaat is zeer kwetsbaar en onderdelen aan de binnenzijde kunnen beschadigd raken.
1. Draag de kist naar een geschikte locatie.

2. Open met behulp van een schroevendraaier de klemmen op het bovenste deksel van de kist.

3. Verwijder de klemmen op het bovenste deksel van de kist, zoals afgebeeld.

5. Haal de laptop of pc en de rest van het verpakkingsmateriaal uit de kist.

6. Pak de HD Analyzer™ vast bij het voetstuk en verplaats deze naar een voorbereide locatie.
Hoofdstuk 2: Hardware Instellen

Sluit de USB-verbinding aan op het instrument en de externe voeding op de juiste ingang aan de zijkant van de machine waar de verbindingen zitten. Het andere uiteinde van de USB-kabel moet worden aangesloten op de pc (of laptop) (USB-poort).

De netsnoeren van zowel de HD Analyzer™ als de computer moeten worden aangesloten op een stopcontact.

2.2. ONDERHOUD

Het enige onderhoud dat de gebruiker moet uitvoeren, is periodieke reiniging. Wij raden aan om het apparaat ieder kwartaal goed te reinigen.

Reinigen

De HD Analyzer™ heeft een laag infectierisico afgeleid van het gebruik ervan, dat kan worden aangemerkt als niet-kritiek en heeft daarom een laag niveau van desinfectie nodig. Patiënten komen in contact met het apparaat door intacte huid in het kingebied en de voorzijde, die rusten op de kinsteun, en met de handen, die gebruikt kunnen worden om de kinsteun vast te pakken.

Deze toepasselijke onderdelen kunnen periodiek worden gedesinfecteerd met een laag niveau ontsmettingsmiddel, zoals quaternaire ammoniumverbindingen.
Hoofdstuk 2: Hardware Instellen

- Dit apparaat droog houden.
- Uitschakelen of stekker uit het stopcontact halen indien het apparaat niet in gebruik is.
- Dit apparaat is niet water- of spatbestendig. Als er vocht, water, of vloeistof in de behuizing komt, dient u onmiddellijk de stekker uit het stopcontact te halen en contact op te nemen met een servicemonteur of uw leverancier voordat u het opnieuw gebruikt.
- Haal de stekker uit de elektrische voeding voordat u de kap verwijdert.
- Geen door de gebruiker te repareren onderdelen binnenin aanwezig. Raadpleeg uw dealer of ander gekwalificeerd onderhoudspersoneel.

Kalibratie

Gebruiker mag geen kalibratie van de apparatuur uitvoeren. Kalibratie moet worden uitgevoerd door personeel dat door de fabrikant is opgeleid.

Aanbevolen wordt om kalibratie op jaarbasis uit te voeren.
3. **Functies van de HD Analyzer™**

3.1. **GEBRUIK VAN DE SOFTWARE ZONDER DE HARDWARE**

De gebruiksvriendelijke software geeft toegang tot een database zonder dat daarvoor de HD Analyzer™ ingeschakeld of zelfs aangesloten hoeft te worden op de computer. Alle hulpmiddelen met betrekking tot de database kunnen worden uitgevoerd zonder apparaat (zie paragraaf 3.5).

De database is ook toegankelijk wanneer de software wordt uitgevoerd in de modus pay-per-patiënt en er geen tegoed aan metingen meer beschikbaar is. Het is niet mogelijk om nieuwe metingen uit te voeren totdat nieuw tegoed wordt gekocht.

3.2. **PAY-PER-PATIENT-MODUS**

Afhankelijk van de service waarvoor u een contract hebt afgesloten, kan de HD Analyzer™ in de gratis modus of in de betaalde pay-per-patient-modus werken.

In de gratis modus kunt u zoveel metingen uitvoeren als u wilt, zonder beperking.

In de pay-per-patiënt-modus hebt u een beperkt metingtegoed. Nadat een meting bij een patiënt is uitgevoerd met het apparaat, wordt een tegoed afgetrokken van de teller. Lees paragraaf 3.6.3 aandachtig, waarin wordt uitgelegd in welke gevallen tegoed wordt afgetrokken, voor elk type meting. Als uw tegoed op is, kunt u met de software wel de resultaten van eerder opgeslagen metingen bekijken, maar kunt u geen nieuwe metingen meer uitvoeren.

U kunt nieuw metingtegoed aanschaffen op de website van Visiometrics (www.visiometrics.com). Klik op de website op Client Access (Klanttoegang) en voer uw gebruikersnaam en wachtwoord in. Zo krijgt u toegang tot uw privéaccount, waar u uw persoonlijke gegevens (User Profile (Gebruikersprofiel)) en de lijst met uw eerdere aankopen kunt bekijken. Selecteer in het onderdeel Buy
measurements *(Metingen kopen)* de locatie waar de HD Analyzer™ is geïnstalleerd en de hoeveelheid tegoed die u wilt kopen. Klik op Buy *(Kopen)* en vul alle verplichte velden in om de aankoopprocedure af te ronden. Het resultaat van dit proces is een 16-cijferige code (activeringscode) in deze indeling:

```
XXXX – XXXX – XXXX – XXXX
```

(Bijvoorbeeld: ABCD-1234-5678-efgh)

Om deze nieuwe metingen beschikbaar voor gebruik te krijgen in de HD Analyzer™, volgt u deze eenvoudige stappen:

1. Noteer de activeringscode.
2. Ga naar de computer die is aangesloten op de HD Analyzer™ en start de software.
5. Het nieuwe metingstegoed wordt vervolgens toegevoegd aan het eerder beschikbare tegoed.

OPMERKINGEN:
- Activeringscodes verlopen niet.
- Elke activeringscode kan slechts een keer worden gebruikt.
- Elke activeringscode kan alleen worden gebruikt voor het apparaat dat is geselecteerd tijdens de aankoopprocedure.

Als u twijfels hebt, neem dan contact op met Visiometrics op het volgende e-mailadres: technicalservice@visiometrics.com.

3.3. AAN DE SLAG
Gebruiksinstructies

Let op: De eerste keer dat u de HD Analyzer™ gebruikt, na het op de werkplek geïnstalleerd te hebben, of na het instrument verplaatst te hebben, moet u een “Snelle Controle” uitvoeren. De instructies hiervoor vindt u in onderdeel 3.8.3 “Snelle Controle”.

Met de HD Analyzer™ kunt u metingen van het oog uitvoeren, met of zonder neutralisaties (bril, contactlenzen of intraoculaire lenzen). Bij gebruik van conventionele lenzen (bril van de patiënt of een proefmontuur) moet deze iets worden gekanteld om reflecties te vermijden. Wij raden daarom het gebruik van het lensframe van het apparaat aan, omdat dat al gekanteld is.

Als de patiënt meer dan 0,5 D astigmatisme heeft, moeten metingen worden uitgevoerd met de corresponderende correctie om onjuiste resultaten te voorkomen.

Aanwijzingen voor patiënten

Het is belangrijk om de patiënt goed en in een comfortabele positie te plaatsen alvorens te beginnen met het uitvoeren van metingen.

Zorg er allereerst voor dat de hygiënische beschermers correct zijn geplaatst op de kinsteun van de HD Analyzer™. De patiënt wordt gevraagd om te gaan zitten en de kin op de hygiënische beschermer op de kinsteun te plaatsen.

Gebruik de joystick van de HD Analyzer™ om het beweegbare onderdeel van de HD Analyzer™ zo ver mogelijk van de patiënt weg te bewegen, totdat de pupil van de patiënt duidelijk op het scherm verschijnt, waarbij wordt vermeden de neus van de patiënt aan te raken. Patiënten moeten zich comfortabel en op hun gemak voelen.

Tijdens de series Objective Refraction (Objectieve refractie), Scatter Meter (Verstrooingsmeter) en Optical Quality (Optische kwaliteit) moet de patiënt...
worden verzocht zo normaal mogelijk naar het doel te kijken en niet meer te knipperen dan nodig is. Aanbevolen wordt de patiënt te waarschuwen dat het doelwit tijdens de series onscherp wordt en dat dit niet moet worden opgevat als slecht zien, maar als een normaal verschijnsel van het apparaat.

Tijdens de pseudoaccommodatieserie (IOL Accommodation (IOL-accommodatie)) wordt de patiënt gevraagd om tijdens het proces zo goed mogelijk de blik op het doel gericht te houden.

Moet de patiënt tijdens het uitvoeren van een traanvochtanalyseserie (Tear Film Analysis (Traanvochtanalyse)) worden gevraagd op een normale manier naar het doel te kijken en zijn best te doen om tijdens het gehele proces (20 seconden) niet te knipperen. Als de patiënt het oog niet zo lang open kan houden, mag er alleen geknipperd worden als dit noodzakelijk is.

En als laatste wordt de patiënt verzocht tijdens het uitvoeren van de Purkinje-reeks (Purkinje) altijd naar het laserlicht te kijken (rood licht), en de ogen hierop te richten. Daarnaast moet de patiënt worden verzocht niet te knipperen wanneer de software voor het eerst beelden door krijgt.

3.4. STARTMENU

Nadat u dubbel geklikt hebt op het pictogram van de HD Analyzer™, wordt het programma opgestart en vraag het om het Serienummer van het instrument.
Dit verzoek zal niet vaker dan één keer in de 24 uur worden uitgevoerd. Als het ingevoerde nummer niet overeenstemt met het in de software geregistreerde nummer, kan er niet verder worden gegaan met de metingen.

Nadat het Serienummer van het instrument is ingevoerd en u op OK klikt, verschijnt het scherm Home (Start), zoals u in afbeelding 3 kunt zien.

Dit scherm biedt u toegang tot de volgende onderdelen:
Gebruikershandleiding HD Analyzer™
Hoofdstuk 3: Functies

- **Database**: geeft toegang tot de patiëntendatabase om eerder opgeslagen resultaten te bewerken, bekijken, vergelijken, af te drukken of te verwijderen. De database is altijd toegankelijk door middel van deze knop; zelfs wanneer de software wordt gebruikt zonder dat de HD Analyzer™ verbonden is, of als er geen metingtegoed in de pay-per-patient-modus beschikbaar is.

- **Measurement (Meting)**: wanneer de HD Analyzer™ is aangesloten op de computer, ingeschakeld is, en het juiste serienummer is ingevoerd, wordt deze knop geactiveerd en zal het scherm waarmee de metingen worden uitgevoerd, worden geactiveerd. In de pay-per-patiënt-modus wordt deze optie alleen ingeschakeld als er metingtegoed beschikbaar is.

- **License Manager (Licentiebeheer)**: geeft toegang tot de toepassing voor het licentiebeheer van het systeem. In die toepassing kan de gebruiker aankoopcodes invoeren die zijn verkregen via de account op de website van Visiometrics. Op deze manier wordt nieuw metingtegoed dat de gebruiker heeft aangeschaft, geactiveerd.

- **Setup (Instellingen)**: met deze knop wordt het instellingenscherm geactiveerd. De gebruiker kan sommige parameters van het systeem wijzigen. De rest van de parameters zijn beschermd met een wachtwoord, dat de fabrikant alleen zal verstrekken als er onderhoudswerkzaamheden aan het apparaat moeten worden uitgevoerd. Dit wachtwoord wordt gewoonlijk niet verstrekt om te voorkomen dat de configuratieparameters van het apparaat per ongeluk worden gewijzigd.

Alleen bevoegd personeel krijgt toegang tot het gedeelte voor hardware-instellingen. Als bepaalde parameters worden gewijzigd, kan dit leiden tot storing van de apparatuur.
Backup (Back-up): hiermee kan een backup worden gemaakt van de patiëntendatabase en bijbehorende beelden in de gewenste map.

3.5. DATABASE

De HD Analyzer™ biedt een eenvoudig te gebruiken patiëntendatabase, die kan worden geopend door te klikken op de knop Database.

Opgeslagen gegevens kunnen ook rechtstreeks worden geopend met behulp van Microsoft Access Microsoft Access™ (indien u dit hebt geïnstalleerd). Zie Bijlage A voor meer informatie over de specifieke gegevens die zijn opgeslagen in het databasebestand.

Database

U kunt eerst een meting uitvoeren en later een patiënt selecteren, of eerst de patiënt selecteren en vervolgens de metingen uitvoeren. In dat geval opent u het databasescherm door te klikken op de knop Database. In dit scherm kunt u ook nieuwe patiënten toevoegen en de bestaande patiënten wijzigen of verwijderen. U kunt ook een patiënt selecteren voor het uitvoeren van nieuwe metingen.
In het veld **Patient (Patiënt)** kunt u snel de naam opzoeken van patiënten. Typ gewoon de eerste letter van de achternaam van de patiënt, waarna een vervolgkeuzelijst verschijnt met alle patiënten van wie de achternaam begint met die letter. Het dossier van de patiënt kan ook worden opgeroepen door het invoeren van een **Id. Number (ID-nummer)** in het bijbehorende veld. Om een patiënt te selecteren, klikt u op de naam of drukt u op **Enter**. Alle gegevensvelden worden ingevuld met de gegevens van de geselecteerde patiënt, evenals de lijst van uitgevoerde metingen voor deze patiënt. Nu kunnen nieuwe metingen worden uitgevoerd (**Measure (Meten)**) of kunnen opgeslagen gegevens worden geanalyseerd (**Results (Resultaten)** of **Compare (Vergelijken)**).

De gegevens in dit scherm kunnen niet worden bewerkt. Voor elke wijziging van gegevens, gebruikt u de knop **Modify (Wijzigen)** (zie paragraaf 3.5.2).

3.5.1. New (Nieuw)

Klik op de knop **New (Nieuw)** om een nieuw patiëntendossier aan de database toe te voegen. Alle gegevensvelden zijn nu bewerkbaar. Het is verplicht om de velden **Patient’s Id (Patiënt-ID)**, **Name (Naam)** en **Surname (Achternaam) in te vullen.** De
velden Gender, Date of birth, Address, City, Zip code, Country, Phone number, Email (Geslacht, Geboortedatum, Woonplaats, Postcode, Land, telefoonnummer, Email) en Comments (Opmerkingen) zijn optioneel.

Klik op OK om het nieuwe dossier te bevestigen of op Cancel (Annuleren) om terug te gaan. Bevestiging is vereist voordat de nieuwe gegevens opgeslagen kunnen worden.

3.5.2. Modify (Wijzigen)

Selecteer een patiënt en klik vervolgens op de knop Modify (Wijzigen) om een patiëntendossier in de database aan te passen.

Afbeelding 6. Gegevens wijzigen

Breng de gewenste wijzigingen aan en klik vervolgens op OK om nieuwe gegevens te valideren of klik op Cancel (Annuleren) om terug te keren zonder de wijzigingen op te slaan. Bevestiging is vereist voordat de gegevens worden gewijzigd.
3.5.3. Verwijderen: patiënt/meting

Selecteer een patiënt en klik vervolgens op de knop Delete (Verwijderen) om een patiëntendossier uit de database te verwijderen.

Bevestiging is vereist voordat een patiëntendossier uit de database wordt verwijderd.

Als u een patiëntendossier verwijdert, zullen alle gegevens en beelden met betrekking tot die patiënt worden verwijderd. Zorg ervoor dat u de juiste patiënt hebt geselecteerd en dat u deze daadwerkelijk wilt verwijderen.

Als u slechts één meting uit de geschiedenis van een patiënt wilt verwijderen, selecteert u een meting uit de lijst en klikt u op Delete acq (Meting verwijderen).

3.5.4. Resultaten

Zodra de patiënt is geselecteerd, worden alle metingen die op hem zijn uitgevoerd weergegeven in de lijst eronder (zie afbeelding 6), en zijn nu beschikbaar voor analyse, afdrukken, vergelijken, enz. De volledige lijst wordt standaard getoond. Er kunnen verschillende typen filters worden toegepast, met behulp van de knoppen rechts van de lijst. De lijst kan ook worden gesorteerd op een van de beschikbare kolommen, door gewoon te klikken op de kolomtitel.
Afbeelding 7. Een meting openen

Dit zijn de verschillende parameters die op de lijst worden weergegeven om de metingen te identificeren:

- **Date/Time (Datum/tijd)**
- **Measurement Type (Type Meting):** *SCT* (Scatter Meter) (Verstrooiingsmeter), *Opt. Qlt.* (Optical Quality) (Optische kwaliteit), *Pseudo Acc.* (Pseudo Accommodation) (Pseudoaccommodatie), *Tear Film* (Tear Film Analysis (Traanvochtanalyse)) en *PKJ* (Purkinje). Het kan zijn dat sommige functies niet beschikbaar in uw systeem.
- **OS/OD:** Linkeroog/Rechteroog
- **Pat. Refrac. (Patiëntrefractie)** Subjectieve patiëntrefractie (de waarden *Sph*, *Cyl* en *Axis*), ingevoerd door de gebruiker vóór het uitvoeren van de meting.
- **Sph. Refrac. (Sferische refractie) Corr.:** Defocus (sferische refractie) correctie van het instrument tijdens de meting.
- **NP.:** natuurlijke pupildiameter (in mm), bepaald door het apparaat tijdens het uitvoeren van de meting. Een waarde van 0 geeft aan dat deze diameter niet is gemeten.
Hoofdstuk 3: Functies

- **AP.**: kunstmatige pupildiameter (in mm), gebruikt voor het uitvoeren van de meting.
- **Notes (Opmerkingen)**: eventuele opmerkingen met betrekking tot de meting.

Selecteer een meting door er op te klikken en klik vervolgens op **Results (Resultaten)** om door te gaan.

3.5.5. Compare (Vergelijken)

Met deze optie kunnen twee metingen van hetzelfde type worden geladen en met elkaar worden vergeleken. Hiervoor klikt u op **Compare (Vergelijken)**. U wordt gevraagd om de eerste meting te selecteren die moet worden vergeleken. Klik vervolgens op **OK**. Vervolgens selecteert u de tweede meting. Het kan een meting van dezelfde patiënt zijn of van iemand anders, maar het moet wel altijd hetzelfde type zijn. Klik nogmaals op **OK**.

Zie paragraaf 3.6.4.4 voor meer informatie over de vergelijkingsschermen.

Het is belangrijk te benadrukken dat het niet mogelijk is om Purkinjemetingen te laden en te vergelijken.

3.6. METINGEN

Er zijn twee manieren om toegang te krijgen tot het belangrijkste meetscherm. De eerste is door te klikken op de knop **Measurement (Meting)** in het menu Home (Start), zonder een patiënt te selecteren. De andere mogelijkheid is om de database te openen door te klikken op **Database**, een patiënt te selecteren en te klikken op **Measure (Meten)**.

In beide gevallen moet de gebruiker de waarden van de subjectieve refractie van de patiënt (zie afbeelding 8) invoeren. Deze informatie is nodig zodat de HD Analyzer™ kan zoeken naar de beste sferische correctie rond een dioptriebereik,
hetgeen resulteert in meer betrouwbare en nauwkeurige metingen en minder tijd kost. De velden Sph (bol), Cyl (cilinder) en Axis (as) zijn verplicht voor beide ogen. Het instrument kan metingen verrichten in het bereik van sferische refracties tussen +5 D tot -8 D, en het bereik van astigmatisme tussen +0,5 D en -0,5 D. Buiten deze bereiken moet de refractie van de patiënt worden gecorrigeerd met proeflenzen (alleen voor het astigmatisme, of voor zowel bol als cilinder) Gebruik hiervoor de lenshouder geplaatst die in het voorste deel van het apparaat zit. De gebruiker moet de juiste optie kiezen in het veld Correction (Correctie) op het hoofdscherm voor metingen (zie paragraaf 3.6.1).

De subjectieve refractie is nodig voor het proces van bepalen van de beste sferische correctie die in de metingen moet worden toegepast. Als de refractie van de patiënt ± 3D boven de inputwaarden is, zal dit proces een verkeerd resultaat geven.

Afbeelding 8. Subjectieve refractie (verkleinde weergave)
U kunt ook de best gecorrigeerde gezichtsscherpte (BCVA) en de ongecorrigeerde gezichtsscherpte (UCVA) als bijkomende informatie invoeren, die zal worden opgenomen in de afdrukrapporten van de meetresultaten. Om dat te doen, gaat u naar het vergrote beeld met knop >>.

![Afbeelding 9. Subjectieve refractie (vergrote weergave)](image)

Nadat alle refractiegegevens zijn ingevoerd, klikt u op OK voor toegang tot het hoofdscherm voor metingen.

3.6.1. Gegevens verkrijgen

Het hoofdscherm voor metingen is verdeeld in zes onderdelen (zie Afbeelding 10):

A. **Systeeminformatie:** de informatie bovenaan het scherm kan worden aangepast, zodat de naam van het centrum en de persoon die de HD Analyzer™ bedient ook getoond worden. Deze informatie kan worden geopend en gewijzigd met de knop Setup (Instellingen) in het menu Home (Start) (zie paragraaf 3.8). Als de software wordt uitgevoerd in
de pay-per-patiënt-modus, toont het systeem ook het beschikbare metingtegoed.

B. **Belangrijkste functies:** met deze knoppen kunt u veel voorkomende handelingen uitvoeren met betrekking tot de gegevens, zoals de database openen (zie paragraaf 3.5) en resultaten opslaan en afdrukken.

C. **Meetprocedures:** sommige knoppen zijn alleen beschikbaar als een
Objective Refraction (Objectieve refractie) is uitgevoerd. Zie de volgende paragrafen voor meer informatie. (Let op: het is mogelijk dat niet alle meetopties beschikbaar zijn in uw systeem.)

D. **Livebeeld:** dit venster toont het oog van de patiënt in real-time, waardoor de gebruiker het beeld kan centreren en scherp stellen.

E. **Inputgegevens:** in dit gedeelte worden de gegevens van de geselecteerde patiënt weergegeven, en kunt u de inputparameters die worden gebruikt voor de meting instellen en wijzigen (meer informatie verderop in deze paragraaf).

F. Dit onderdeel toont twee verschillende soorten informatie:

 a. **Visualisatie van de procedure voor Objective Refraction (Objectieve refractie):** in dit gedeelte worden de voortgang en de resultaten van de procedure voor het bepalen van de beste sferische refractiecorrectie getoond.

 b. **Meetresultaten:** nadat de meetprocedure is afgerond, worden resultaten weergegeven voor: Scatter Meter (Verstrooiingsmeter), Optical Quality (Optische kwaliteit), Pseudo Accommodation (Pseudo-accommodatie) en Tear Film Analysis (Traanvochtanalyse), evenals de parameters die zijn ingevoerd door de gebruiker (zie paragraaf 3.6.4)
Als een patiënt is geselecteerd, verschijnen de gegevens op het hoofdscherm. Het oog dat gemeten gaat worden OD/OS (respectievelijk Rechteroog/Linkeroog) wordt automatisch gedetecteerd door het apparaat. De sferische refractie van het oog (Sph), cilinder (Cyl) en astigmatisme-as (Axis) die eerder zijn ingevoerd, worden in de overeenkomstige velden weergegeven. Controleer of de waarden correct zijn. Als ze niet correct zijn, kunt u de waarden wijzigen door te klikken op *Change subjective refraction* (*Subjectieve refractie wijzigen*), zoals in rood weergegeven in Afbeelding 11.
Het is belangrijk om de juiste waarden voor de subjectieve refractie van de patiënt in te voeren. In de procedure voor *Objective Refraction* (*Objectieve refractie*) (bepalen van de beste sferische correctie voor de patiënt), zoekt de HD Analyzer™ naar correcties binnen een bereik van ± 3D rond de sferische equivalent van de subjectieve refractie die door de gebruiker is ingevoerd. Als de ingevoerde waarden niet correct zijn, vindt het apparaat een onjuiste sferische correctie en is het mogelijk dat de andere resultaten ook onjuist zijn.

De subjectieve refractie is nodig voor het proces van bepalen van de beste sferische correctie die in de metingen moet worden toegepast. Als de refractie van de patiënt ± 3D boven de inputwaarden is, zal dit proces een verkeerd resultaat geven.

Bedenk ook dat het instrument metingen kan uitvoeren in het bereik van sferische refracties tussen +5 D tot -8 D. Als het oog dat moet worden gemeten zich buiten het bereik bevindt, moet de refractie van de patiënt extern worden gecorrigeerd.
met behulp van proeflenzen. Het systeem kan voor het astigmatisme van de patiënt metingen uitvoeren in het bereik tussen +0,5 D y -0,5 D. Grotere astigmatismen beïnvloeden het netvliesbeeld dat door het instrument is geregistreerd, zodat eventuele onderliggende probleem verborgen blijven door dit effect. Bovendien kunnen de resultaten van OSI worden beïnvloed door de aanwezigheid van astigmatisme. Daarom moeten cilindrische brekingen buiten dat bereik worden gecorrigeerd met behulp van proeflenzen. In gevallen die buiten bereik vallen, herinnert de software u eraan de juiste externe correctie in te voeren.

Het instrument heeft een proeflenshouder in het voorste deel. Wij raden het gebruik van deze houder ten zeerste aan, hoewel het mogelijk is om een proefmontuur of zelfs de bril van de patiënt te gebruiken (zie paragraaf 3.3).

Bij het extern corrigeren van de sferische en/of cilindrische refracties, die door het apparaat moeten worden aangegeven. Selecteer hiervoor de juiste optie uit de vervolgkeuzelijst in het veld Correction (Correctie). De verschillende opties zijn:

- **No correction (Geen correctie):** de gebruiker heeft de refractie van de patiënt niet gecorrigeerd met behulp van proeflenzen.
- **Astig. correction (Astigmatische correctie):** de gebruiker heeft het astigmatisme van de patiënt gecorrigeerd met behulp van een proeflens.
- **Total correction (Totale correctie):** de gebruiker heeft zowel de sferische refractie als het astigmatisme van de patiënt gecorrigeerd met behulp van proeflenzen.

Nogmaals, het is van belang om de juiste optie te selecteren in het veld Correction (Correctie). De sferische equivalente die wordt gebruikt voor de procedure voor Objective Refraction (Objectieve refractie) is sterk afhankelijk van de toegepaste correctie. Als een onjuiste optie wordt geselecteerd, vindt het apparaat een onjuist sferische correctie en is het mogelijk dat de andere resultaten ook onjuist zijn.
U moet de juiste optie in het veld Correction (Correctie) selecteren. Als een onjuiste optie is geselecteerd, kan het proces van het bepalen van de beste sferische correctie een verkeerd resultaat opleveren.

3.6.2. Objectieve refractie

Zie paragraaf 3.3 voor aanwijzingen voor de patiënt.

Klik op Objective Refraction (Objectieve refractie) om het proces voor het bepalen van de optimale sferische refractiecorrectie te bepalen. Deze taak is nodig om de aanwezigheid van onscherpte op de geregistreerde afbeeldingen te voorkomen. Het effect daarvan kan namelijk onderliggende problemen verbergen. Dientengevolge moet de optimale sferische correctie worden vastgesteld vóór het uitvoeren van een meting. HD Analyzer™ maakt een sweep op zoek naar het beste tweetrapsbeeld bij verschillende sferische correcties, om zo onscherpte te compenseren. Tijdens dit proces kan de gebruiker de beelden zien die worden opgenomen door de HD Analyzer™. Eenmaal klaar, kiest het systeem automatisch de beste correctie. Deze selectie kan worden gewijzigd door te klikken op het gewenste beeld, maar alleen als u er echt zeker van bent dat het een betere correctie is.

Nadat de beste correctie is ingesteld, toont de HD Analyzer™ deze waarde als Objective spherical refraction (Objectieve sferische refractie) en Selected spherical refraction (Geselecteerde sferische refractie). Deze laatste waarde kan desgewenst worden gewijzigd. Er moet rekening mee worden gehouden dat de metingen worden uitgevoerd rekening houdend met de waarde van de Selected spherical refraction (Geselecteerde sferische refractie).
Er moet rekening mee worden gehouden dat het wijzigen van de waarde Selected spherical correction (Geselecteerde sferische correctie), kan leiden tot het verkrijgen van een verkeerd of onverwacht resultaat. Wijzig deze waarde alleen als u het absoluut zeker weet.

Afbeelding 12. Proces van objectieve refractie

De HD Analyzer™ is nu gereed om de meetprocessen te starten en de knoppen Scatter Meter (Verstrooiingsmeter), Optical Quality (Optische kwaliteit), Pseudo Accommodation (Pseudoaccommodatie) en Tear Film Analysis (Traanvochtanalyse) zijn nu ingeschakeld. (Let op: het is mogelijk dat niet alle meetopties beschikbaar zijn in uw systeem.)
3.6.3. Soorten meting

3.6.3.1. Verstrooiingsmeter en optische kwaliteit

Zie paragraaf 3.3 voor aanwijzingen voor de patiënt.

Zodra het proces van *objectieve refractie* is uitgevoerd, kunnen de metingen beginnen. In het geval van *optische kwaliteit* moet u de diameter vaststellen van de kunstmatige pupil die voor de meting wordt gebruikt. Selecteer de gewenste waarde in het veld *Artificial pupil diameter (Diameter kunstmatige pupil)*. In het geval van de *verspreidingsmeter* hoeft u die parameter niet in te stellen. Volgens de definitie van de OSI-parameter moet de meting worden uitgevoerd met een kunstmatige pupil van 4 mm, ongeacht wat de ingevoerde waarde is.

Klik op *Scatter Meter (Verstrooiingsmeter)* of *Optical Quality (Optische kwaliteit)* om de bijbehorende meting te starten (kwantificering van intraoculair verstrooid licht of evaluatie van optische kwaliteit voor verziendheid). Beide processen bestaan uit het vastleggen van zes dubbele-toevoerbeelden in omstandigheden van de beste sferische correctie (verziendheid) en de verwerking ervan. De beelden die als juist worden beschouwd, worden groen omkaderd. Zodra het proces is voltooid, kan de gebruiker een keuze maken uit berekeningen voor elk gewenst beeld door er met de muis op te klikken. Gekozen beelden worden rood omkaderd. Beelden worden verwerkt en geanalyseerd door te klikken op *Results (Resultaten)* en de resultaten worden met verschillende weergaveopties getoond (zie paragraaf 3.6.4.1).
Als u niet tevreden bent met de meting, kunt u deze herhalen door op *Return te klikken.*

*Als u de software in pay-per-patient-modus uitvoert en u op *Results (Resultaten)* klikt, gaat het systeem ervan uit dat u de meting hebt voltooid. Met een metingtegoed kunt u twee achtereenvolgende metingen uitvoeren voor dezelfde patiënt. Een metingtegoed wordt dus afgetrokken van uw teller nadat u de eerste meting voor een patiënt hebt uitgevoerd, maar er wordt niets in rekening gebracht als u direct na de eerste meting nog een tweede meting uitvoert. Als u een derde meting uitvoert, wordt u weer een bedrag in rekening gebracht, waarna de vierde weer gratis is, enzovoort. Houd er rekening mee dat als u de database opent en een patiënt selecteert, deze altijd als een nieuwe patiënt wordt beschouwd, ook als u dezelfde patiënt hebt geselecteerd.*
3.6.3.2. Pseudoaccommodatie

Zie paragraaf 3.3 voor aanwijzingen voor de patiënt.

Zodra het proces van *objectieve refractie* is uitgevoerd, kunnen de metingen beginnen. In het geval van *pseudoaccommodatie* moet u de diameter vaststellen van de kunstmatige pupil die voor de meting wordt gebruikt. Selecteer de gewenste waarde in het veld *Artificial pupil diameter (Diameter kunstmatige pupil)*.

Klik op *Pseudo Accommodation (Pseudoaccommodatie)* om het meetproces te starten voor een pseudoaccommodatiebereik. Dit proces maakt een sweep van 4 diopters [BF +1 diopters, BF -3 diopters] van de waarde van de beste correctie (BF) gemeten tijdens het proces van *objectieve refractie* of een die door de gebruiker is aangewezen.

Het systeem maakt stappen van -0,5 D, waarbij beelden bij elke vergentie worden geregistreerd totdat de eindpositie wordt bereikt. De geregistreerde beelden worden in real-time weergegeven.

![Afbeelding 14. Meting van pseudoaccommodatie](image-url)
Er moet rekening mee worden gehouden dat wanneer wordt gemeten op BF + 1 D en BF + 0,5 D de patiënt het doel niet goed zal kunnen zien, ongeacht hoe veel hij probeert om te accommoderen. In het bereik tussen BF en BF - 3 D moet de patiënt altijd proberen te accommoderen met de bedoeling het doel helder te zien.

Bij het uitvoeren van een pseudoaccommodatieserie wordt de patiënt gevraagd om gedurende het gehele proces zich op het doel te focussen. Anders kan de meting mogelijk een verkeerd resultaat opleveren.

Als u van mening bent dat het proces juist is, klikt u op Results (Resultaten) om de eindberekeningen te bekijken. Anders kunt u de test herhalen door op Return te klikken.

Als u de software in pay-per-patient-modus uitvoert en u op Results (Resultaten) klikt, gaat het systeem ervan uit dat u de meting hebt voltooid. Met een metingtegoed kunt u twee achtereenvolgende metingen uitvoeren voor dezelfde patiënt. Een metingtegoed wordt dus afgetrokken van uw teller nadat u de eerste meting voor een patiënt hebt uitgevoerd, maar er wordt niets in rekening gebracht als u direct na de eerste meting nog een tweede meting uitvoert. Als u een derde meting uitvoert, wordt u weer een bedrag in rekening gebracht, waarna de vierde weer gratis is, enzovoort. Houd er rekening mee dat als u de database opent en een patiënt selecteert, deze altijd als een nieuwe patiënt wordt beschouwd, ook als u dezelfde patiënt hebt geselecteerd.
3.6.3.3. Traanvochtanalyse

Zie paragraaf 3.3 voor aanwijzingen voor de patiënt.

Opmerking: mogelijk is dit type meting niet beschikbaar in uw systeem.

Zodra het proces van *objectieve refractie* is uitgevoerd, kunnen de metingen beginnen. In het geval van *traanvochtanalyse* hoeft u niet de diameter van de kunstmatige pupil in te stellen. Om er zeker van te zijn dat traanvochtafname wordt opgespoord, met inbegrip van de rand de pupil van de patiënt, wordt dit proces uitgevoerd met de maximale grootte van de kunstmatige pupil (7 mm), ongeacht wat de ingevoerde waarde is.

Klik op *Tear Film Analysis (Traanvochtanalyse)* om de evaluatie van de traanvocht dynamiek te starten. Hierbij worden dubbele-toevoerbeelden elke 0,5 seconden vastgelegd gedurende 20 seconden. Op deze manier worden 40 beelden vastgelegd, waarvan de ontwikkeling van de optische kwaliteit gedurende die 20 seconden wordt getoond. Deze beelden worden in real-time weergegeven.

Het wordt sterk aanbevolen het oog dat niet wordt gemeten gesloten te houden om te zorgen dat de traanklieren niet worden gestimuleerd en "extra" tranen worden geproduceerd.

De gebruiker moet proberen het oog van de patiënt gerichte te houden op de afbeelding om er zeker van te zijn dat enig verschil tussen beelden kan worden toegeschreven aan een verandering in traanvocht. Als de patiënt tijdens het proces knippert, wordt een rood kader weergegeven om het live beeld van het oog en wordt het bijbehorende beeld gemaakte als 'Blink' (Knipperen).

Afbeelding 15 toont de resultaten van een traanvochtanalyse.
Na 20 seconden ziet u alle 40 opgeslagen afbeeldingen. Onder elke afbeelding ziet u de exacte seconde waarop de afbeelding werd opgeslagen. Sommige afbeeldingen kunnen worden aangemerkt als “Blink” (Knipperen). U kunt de status van de afbeelding veranderen, van “Blink” naar normaal, of van normaal naar “Blink”, door op de afbeelding te klikken.

Als u van mening bent dat het proces juist is, klikt u op *Results (Resultaten)* om de eindberekeningen te bekijken. Anders kunt u de test herhalen door op *Return* te klikken.
Als u de software in pay-per-patient-modus uitvoert en u op Results (Resultaten) klikt, gaat het systeem ervan uit dat u de meting hebt voltooid. Met een metingtegoed kunt u twee achtereenvolgende metingen uitvoeren voor dezelfde patiënt. Een metingtegoed wordt dus afgetrokken van uw teller nadat u de eerste meting voor een patiënt hebt uitgevoerd, maar er wordt niets in rekening gebracht als u direct na de eerste meting nog een tweede meting uitvoert. Als u een derde meting uitvoert, wordt u weer een bedrag in rekening gebracht, waarna de vierde weer gratis is, enzovoort. Houd er rekening mee dat als u de database opent en een patiënt selecteert, deze altijd als een nieuwe patiënt wordt beschouwd, ook als u dezelfde patiënt hebt geselecteerd.

3.6.4. Resultaten controleren

De resultaten schermen voor de verschillende soorten metingen hebben een algemeen gebied dat de parameters bevat die tijdens de meting zijn gebruikt. Deze parameters zijn:

- **OD/OS**: gemeten oog (rechts/links).
- **Sph, Cyl, Axis**: waarden voor subjectieve refractie ingevoerd door de gebruiker vóór het uitvoeren van de meting.
- **Comments (Opmerkingen)**: opmerkingen over de patiënt ingevoerd door de gebruiker in de patiëntgegevens in de database.
- **Artificial pupil diameter (Diameter kunstmatige pupil)**: diameter van kunstmatige pupil gebruikt om metingen te verrichten, ingevoerd door de gebruiker.
- **Measured pupil diameter (Diameter gemeten pupil)**: diameter van de pupil van de patiënt, gemeten door het instrument. Een waarde van 0,0 geeft aan dat de grootte van de pupil van de patiënt niet kan worden gemeten.
Objective spherical refraction (Objectieve sferische refractie): de beste sferische correctie die is verkrijgen tijdens het proces van objectieve refractie.

Selected spherical refraction (Geselecteerde sferische refractie): de sferische correctie die is gebruikt in de meting.

Correction (Correctie): geeft weer of de meting is verricht zonder correctie van externe refractie, met astigmatismecorrectie of met totale correctie, zoals ingevoerd door de gebruiker.

Acquisition notes (Metingopmerkingen): opmerkingen over de meting, ingevoerd door de gebruiker.

De numerieke resultaten en de verschillende beschikbare weergaven zijn afhankelijk van het specifieke type meting. Op de volgende pagina's vindt u een beschrijving van de verschillende elementen die voor elk type worden getoond.

3.6.4.1. Verstrooiingsmeter en optische kwaliteit

Zodra het proces van de verstrooiingsmeter of optische kwaliteit is voltooid, klikt u op Results (Resultaten). Resultaten worden afgebeeld zoals op respectievelijk Afbeelding 16 en Afbeelding 17.
De resultaten die door het systeem voor beide typen metingen worden gegeven, zijn wezenlijk hetzelfde, met uitzondering van de parameter OSI (Objective
Scattering Index (Objectieve verstrooiingsindex)) die alleen wordt berekend voor de verstrooiingsmeter (zie paragraaf 1.1.2).

Het resultaten scherm is onderverdeeld in drie regio's die duidelijk van elkaar zijn gescheiden, zoals te zien is op Afbeelding 18:

A. **Beeldweergave-regio:** afhankelijk van de selectie die is gemaakt met de knoppen in deel C, wordt in deze regio een van de weergaveopties getoond die beschikbaar zijn in de normale modus (VA simulation, 2D) of voor deskundigen (3D, Profile, MTF). (Zie hieronder voor meer informatie).

B. **Input/Output data (Invoer-/uitvoergegevens):** in dit gedeelte worden de meest representatieve numerieke resultaten getoond die zijn verkregen met de meting, evenals de parameterwaarden die zijn ingevoerd.

De meest representatieve resultaten zijn:
OSI: alleen voor de verstrooingsmeter. Dit is de *Objective Scattering Index* (*Objectieve verstrooingsindex*) die het niveau aan intraoculaire verstrooing van het oog kwantificeert. Voor een duidelijker weergave wordt de OSI-waarde ook weergegeven in een kleurenschaal. Dit toont op een grafische manier of de waarde overeenkomt met een laag, gemiddeld of hoog niveau aan verstrooing. Waarden binnen het groene gedeelte van de schaal geven ogen met een laag verstrooiingsniveau aan. Waarden binnen het gele gedeelte van de schaal geven gevallen aan waarin verstrooiing waarnembaar wordt (eerste fasen van staar, lens die ondoorzichtig wordt, enzovoort). Waarden binnen het rode gedeelte van de schaal geven ogen met een hoog verstrooiingsniveau aan (rijpe staar, enz.).

Predicted Visual Acuity (Voorspelde gezichtsscherpte): dit is de waarde van de gezichtsscherpte geschat op basis van de werkelijke optische kwaliteit van het oog (*MTF*). Dit kan worden gezien als de monoculaire gezichtsscherpte die een patiënt zou hebben, als die waarde alleen afhankelijk zou zijn van optische factoren. Er wordt geen rekening gehouden met de netvlieswerking en de neurale verwerking die daarna plaatsvinden. Het resultaat wordt zowel getoond in decimale als in Snellen-notatie.

![Afbeelding 19. Invoer-/uitvoergegevens](image)

C. **Regio met knoppen:** deze regio bestaat uit de knoppen die toegang bieden tot de verschillende weergaveopties voor de resultaten die zijn verkregen voor de metingen. Standaard worden twee opties weergegeven (*VA simulation en 2D*). Met de knop *More options (Meer opties)* kunt u
toegang krijgen tot weergaven voor deskundigen (3D, Profile en MTF, afgezien van de twee standaardopties).

De verschillende weergaveopties worden hieronder besproken.

De weergave VA Simulation (VA-simulatie)

Klik op de knop VA in de regio met knoppen op het resultatenscherm voor toegang tot het scherm VA Simulation (VA-simulatie). Dit is de standaardoptie die wordt weergegeven net nadat de resultaten zijn verwerkt.

Het doel van dit scherm (Afbeelding 20) is om te tonen hoe de afbeelding van een alledaagse scène er uitziet als deze wordt geprojecteerd op het netvlies van de patiënt. De software toont hier de afbeelding van een baby die op een afstand van 1 meter van de kijker is geplaatst.

Aan de linkerkant van het scherm kunt u de originele scène zien. Aan de rechterkant ziet u een simulatie van hoe die scène op het netvlies wordt afgebeeld. De simulatie wordt bereikt via de convolutie van de originele scène met de PSF van het oog gemeten door het instrument. Op deze manier wordt getoond hoe aberraties en intraoculaire verstrooiing van het optische systeem van de patiënt de beeldvorming beïnvloeden. Dit betekent niet dat de patiënt de scène ziet zoals deze op het scherm wordt weergegeven, omdat de enige factor die wordt gebruikt de optische kwaliteit is, niet de neurale verwerking naar het beeld op het netvlies.
Voor een normaal en gezond oog zullen beide beelden (origineel en retinaal) zeer soortgelijk zijn. Voor ogen met aberraties zult u opmerken dat het beeld wazig wordt, zodat het moeilijker wordt om details te onderscheiden. Voor ogen met een hoog niveau aan intraoculaire verstrooing zult u een duidelijk algeheel verlies aan contrast van het beeld opmerkingen. Andere effecten zoals schitteringen of halo's worden niet in dit beeld gesimuleerd, en ze zijn daarin dus ook niet te verwachten.

De beelden kunnen worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp* - of *jpeg*-afbeeldingsbestanden.

2D-weergave

Klik op de knop 2D in de regio met knoppen op het resultatenscherm voor toegang tot het scherm 2D.

Er worden twee weergaven van netvliesbeelden getoond op dit scherm, zoals te zien is op Afbeelding 21. Het 2D-netvliesbeeld wordt aan de linkerkant van het scherm weergegeven met de oorspronkelijke grootte en aan de rechterkant is erop
ingezoomd. U kunt in- en uitzoomen door te klikken op de knoppen *In of Out* (*Uit*) (maximale inzoomfactor is 16 en minimale zoomfactor is 2). De verschillende energieniveaus worden aangegeven met een kleurenschaal.

U kunt een bepaald gebied van het beeld selecteren door er met de muis op te klikken en over te slepen. Dat gebied wordt dan met de geselecteerde zoomfactor op het rechterbeeld getoond. De schaal van beide beelden wordt er direct onder weergegeven, in boogminuten.

U kunt afstanden meten op het netvliesbeeld door met de rechtermuisknop te klikken en met de muis over een van beide beelden te slepen. De gemeten afstand wordt boven de muisaanwijzer weergegeven.

De beelden kunnen worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp*- of *jpeg*-afbeeldingsbestanden.

Afbeelding 21. 2D-weergave
3D-weergave

Deze optie is pas beschikbaar als u op de knop *More options (Meer opties)* hebt geklikt. Deze optie is bestemd voor zeer ervaren gebruikers.

Klik op de knop 3D in de regio met knoppen op het resultatenscherm voor toegang tot het scherm 3D.

Het 3D-netvliesbeeld wordt aan de rechterkant van het scherm weergegeven (Afbeelding 22). U kunt in- en uitzoomen door op de knoppen In en Out (Uit) te klikken.

Het netvliesbeeld kan worden gedraaid, verplaatst en geschaald door er met de muis over te bewegen.

De beelden kunnen worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp-* of *jpeg-*afbeeldingsbestanden.

![Afbeelding 22. 3D-weergave](image-url)
Weergave van profiel

Deze optie is pas beschikbaar als u op de knop More options (Meer opties) hebt geklikt. Deze optie is bestemd voor zeer ervaren gebruikers.

Klik op de knop Profile (Profiel) in de regio met knoppen op het resultatenscherm voor toegang tot het scherm Profile (Profiel).

Aan de rechterkant van het scherm wordt het intensiteitsverdelingsprofiel van het netvliesbeeld getoond. U kunt een specifiek gebied selecteren met de muis en er vervolgens op in- of uitzoomen. Om in te zoomen, moet u linksboven beginnen met het selecteren van het gewenste gebied. Om uit te zoomen, moet u rechtsonder beginnen met het selecteren van het gewenste gebied.

Het radiale profiel toont het gemiddelde profiel. Om het profiel vanuit een gewenste hoek te bekijken, kiest u Angular (Hoek). Schuif met de balk die onder het beeld wordt weergegeven om de gewenste hoek in te stellen.

Afbeelding 23. Weergave van profiel
Gebruikershandleiding HD Analyzer™ Hoofdstuk 3: Functies

De software toont ook de waarden van de breedten van het profiel op 50% en 10% van de maximumwaarde. Met deze waarden kan de gebruiker informatie verkrijgen over de grootte en vorm van het beeldprofiel.

De profielplot kan worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als een afbeeldingsbestand (*bmp of *jpeg), of de plotgegevens als een tekstbestand (*txt) opslaan.

MTF-weergave

Deze optie is pas beschikbaar als u op de knop More options (Meer opties) hebt geklikt. Deze optie is bestemd voor zeer ervaren gebruikers.

Klik op de knop MTF in de regio met knoppen op het resultatenscherm voor toegang tot het scherm MTF.

De MTF geeft een volledige beschrijving van de prestaties van een optisch systeem. MTF-waarden vertegenwoordigen het quotiënt tussen het contrast van het beeld en het contrast van het object voor elke ruimtelijke frequentie (zie paragraaf 1.1.3). Met deze functie kan het systeem de gezichtsscherpte schatten op basis van de optiek van het oog, voor verschillende contrasten (Predicted VA (Voorspelde gezichtsscherpte) 100%, 20% y 9%). Deze informatie heeft een soortgelijke betekenis als die wordt verkregen met subjectieve technieken, zoals Snellen-diagramonderzoeken. Maar we moeten er op wijzen dat deze informatie alleen wordt beïnvloed door optische defecten, terwijl deze bij subjectieve metingen aanzienlijk wordt beïnvloed door taken van neurale verwerking. De geschatte gezichtsscherpte wordt zowel in de decimale als de Snellen-schaal getoond.

De MTF-kantelwaarde wordt ook verstrekt. Hoe hoger de kantelwaarden, hoe beter het netvliesbeeld (zie paragraaf 1.1.3). Een andere parameter die door het systeem wordt verstrekt, is de Strehl ratio (Strehlverhouding). Deze verhouding is een kwalitatieve meting van de optische kwaliteit van het oog en kan worden
berekend als de verhouding van de MTF van het oog en dat van een systeem dat wordt beperkt door diffractie. Daarom is dit een cijfer tussen 0 en 1. Wederom geldt dat hoe hoger de waarde is, hoe beter de optische kwaliteit is. Een normaal jong oog met een pupildiameter van 4 mm zal bijvoorbeeld een Strehlverhouding van rond de 0,3 hebben.

Afbeelding 24. MTF-weergave

Er worden twee weergaven van MTF verstrekt:

- **Lineair** (*Linear*) is de standaardoptie wanneer u de MTF-plot voor de eerste keer selecteert. De ruimtelijke frequentie wordt getoond in een lineaire schaal.

- **Logaritmisch** (*Log*), waar de as van de ruimtelijke frequentie wordt getoond in een logaritmische schaal, waarmee de kantelfrequentie (*MTF Cut off*) duidelijk kan worden waargenomen.

Die plot wordt aan de rechterkant van het scherm weergegeven. U kunt een specifiek gebied selecteren met de muis en er vervolgens op in- of uitzoomen. Om in te zoomen, moet u linksboven beginnen met het selecteren van het gewenste
gebied. Om uit te zoomen, moet u rechtsonder beginnen met het selecteren van het gewenste gebied.

De MTF-plot kan worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als een afbeeldingsbestand (*bmp* of *jpeg*), of de plotgegevens als een tekstbestand (*txt*) opslaan.

3.6.4.2. Pseudoaccommodatie

Als het proces van *pseudoaccommodatie* is voltooid en u op de knop *Results (Resultaten)* klikt, worden resultaten weergegeven zoals wordt geïllustreerd op Afbeelding 25.

![Afbeelding 25. Resultaten van pseudoaccommodatie](image)

Op het resultatenscherm worden alle negen afbeeldingen weergegeven die tijdens het proces zijn vastgelegd (zie sectie 3.6.3.2). Daarbij bevat het een plot van een beeldkwaliteitsindex voor elke vergentie. Deze beeldkwaliteitswaarden zijn genormaliseerd. Voor de beste sferische correctie (BF) moet deze daarom een waarde hebben van 1. Die plot wordt rechts onder in het scherm weergegeven. U kunt een specifiek gebied selecteren met de muis en er vervolgens op in- of
uitzoomen. Om in te zoomen, moet u linksboven beginnen met het selecteren van het gewenste gebied. Om uit te zoomen, moet u rechtsonder beginnen met het selecteren van het gewenste gebied.

OQAS™ Accommodative Range (Accommodatiebereik) wordt beschouwd als het dioptriebereik tussen BF en het punt waarop de kwaliteit afneemt tot 50% van het maximum.

De waarde in de linkerbovenhoek van elk beeld komt overeen met de profielbreedte op 50% in boogminuten.

Het systeem biedt ook een simulatie van het beeld dat wordt geprojecteerd op het netvlies van een optotype (Snellen-letter E), voor elke vergentie, zoals in de weergave van een *gezichtsscherptesimulatie* voor de *verstrooingsmeter* en *optische kwaliteit*. We willen u eraan herinneren dat dit niet betekent dat de patiënt de scène ziet zoals deze op het scherm wordt weergegeven, omdat de enige factor die wordt gebruikt de optische kwaliteit is, niet de neurale verwerking naar het beeld op het netvlies.

De beelden kunnen worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp* of *jpeg*-afbeeldingsbestanden.

De plot kan worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als een afbeeldingsbestand (*bmp* of *jpeg*), of de plotgegevens als een tekstbestand (*txt*) opslaan.

3.6.4.3. Traanvochtanalyse

Opmerking: mogelijk is dit type meting niet beschikbaar in uw systeem.
Als het proces van traanvochtanalyse is voltooid en u op de knop Results (Resultaten) klikt, worden resultaten weergegeven zoals wordt geïllustreerd op Afbeelding 26.

![Afbeelding 26. Resultaten van traanvochtanalyse](image)

Op het resultatenscherm worden alle 40 afbeeldingen weergegeven die tijdens het proces zijn vastgelegd (zie sectie 3.6.3.3). Boven aan elk beeld staan twee nummers. Het linkernummer staat voor het moment waarop het beeld is vastgelegd. Het rechternummer staat voor de OSI-waarde voor dat beeld.

Ook wordt een plot weergegeven, dat de ontwikkeling van de OSI met de tijd aangeeft. Een verhoging in de OSI kan een beeldafname veronderstellen veroorzaakt door de afbraak van traanvocht. Die plot wordt rechts onder in het scherm weergegeven. U kunt een specifiek gebied selecteren met de muis en er vervolgens op in- of uitzoomen. Om in te zoomen, moet u linksboven beginnen met het selecteren van het gewenste gebied. Om uit te zoomen, moet u rechtsonder beginnen met het selecteren van het gewenste gebied.

Als tijdens de meting een knipperbeweging wordt gedetecteerd, wordt het bijbehorende beeld gmarkeerd als ‘Blink’ (Knipperen) en wordt geen punt in de grafiek aangegeven.
De beelden kunnen worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp*- of *jpeg*-afbeeldingsbestanden.

De plot kan worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als een afbeeldingsbestand (*bmp* of *jpeg*), of de plotgegevens als een tekstbestand (*txt*) opslaan. Deze gegevens worden in verschillende kolommen geëxporteerd, waarvan de 3 eerste het belangrijkst zijn: de tijd, OSI-waarden en of er wel of niet is geknepen. Als een punt in de grafiek niet wordt aangegeven vanwege knipperen, wordt de bijbehorende OSI-waarde wel aangegeven in de geëxporteerde gegevens.

3.6.4.4. Schermen voor het vergelijken van resultaten

Zoals uitgelegd in paragraaf 3.5.5 biedt het systeem voor elk type meting behalve Purkinjemetingen een scherm voor het vergelijken van resultaten.

Op de volgende afbeeldingen wordt een voorbeeld van elk van deze schermen voor het vergelijken van resultaten weergegeven. Alle schermen hebben dezelfde structuur. Het onderste deel komt overeen met de parameters die zijn gebruikt voor elk van de metingen, terwijl u in het bovenste deel de verkregen resultaten ziet. U ziet dezelfde numerieke resultaten alsof u elke meting afzonderlijk zou bekijken. Op dezelfde manier als voor de resultatenschermen die eerder zijn besproken, kunt u voor Scatter Meter (*Verstrooiingsmeter*) en Optical Quality (*Optische kwaliteit*) op More options (*Meer opties*) klikken om de resultaten te bekijken die zijn bestemd voor zeer ervaren gebruikers (evenals de *MTF*- en *Profile*-weergave).
Afbeelding 27. Vergelijking van metingen van de verstrooingsmeter

Afbeelding 28. Vergelijking van metingen van de **optische kwaliteit**
Afbeelding 29. Vergelijking van metingen van pseudoaccommodatie

Afbeelding 30. Vergelijkingen van metingen van traanvochtanalyse

Er kan een rapport van de vergelijking worden afgedrukt. Klik op Print (Afdrukken) voor toegang tot het rapport. Zie paragraaf 3.6.6 voor meer informatie.
Van alle schermen kunnen de beelden worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als *bmp* - of *jpeg*-afbeeldingsbestanden. De plots kunnen ook worden geëxporteerd door erop te dubbelklikken en vervolgens de gewenste bestemming te selecteren. U kunt deze exporteren als een afbeeldingsbestand (*bmp* of *jpeg*), of de plotgegevens als een tekstbestand (*txt*) opslaan.

3.6.5. Purkinje-meting

3.6.5.1. Invoeren van subjectieve refractie

Om in het scherm van de Purkinje-meting te komen, moet u *Measurement (meting)* selecteren en de subjectieve refractie van de patiënt invoeren.

Het zicht van de patiënt mag niet worden gecorrigeerd. Maak geen gebruik van proeflenzen of de correctiemiddelen van de patiënt zelf.

![Subjectieve refractie](Afbeelding 31. Subjectieve refractie)
De ingevoerde subjectieve refractie wordt bij de Purkinje-meting gebruikt om het object op de juiste afstand van het oog van de patiënt te plaatsen, waardoor de patiënt het object gemakkelijk en duidelijk kan zien.

3.6.5.2. Selecteren van de Purkinje-optie
Wanneer u de subjectieve refractie van de patiënt hebt ingevoerd, klikt u op Purkinje.

Afbeelding 32. Purkinje-optie

3.6.5.3. Beweeg ver weg en centreer het oog van de patiënt
Terwijl de patiënt naar het object kijkt, begint u met het apparaat op een zo groot mogelijke afstand van het oog van de patiënt, en probeert u de pupil van de patiënt te centreren in het assenstelsel dat over het beeld wordt geprojecteerd.

Wanneer u dit doet:

- Is het niet belangrijk of het oog van de patiënt scherp in beeld is.
- Kan de patiënt zo vaak knipperen als hij of zij maar wil, omdat er geen beeld wordt vastgelegd.
3.6.5.4. Selecteer de gewenste optie

Wanneer het apparaat zich zo ver mogelijk van het oog van de patiënt bevindt en het oog van de patiënt is gecentreerd in het assenstelsel, moet u de gewenste optie selecteren voor het soort onderzoek dat u wilt uitvoeren:

- *Pre-Without inlay (preoperatief-zonder implantaat)* voor patiënten zonder KAMRA™-implantaat.

- *Post-With inlay (postoperatief-met implantaat)* voor patiënten die al een KAMRA™-implantaat hebben.

Wanneer u een van beide opties selecteert, wordt de laserdiode geactiveerd, en is deze voor de patiënt zichtbaar. De patiënt moet in de laserstraal (rood licht) te kijken.

Automatische en Manuele opties geven aan of de opgenomen beelden automatisch door de software moeten worden bekeken, of dat de clinicus de exacte locatie en grootte moet selecteren van

- Bij Pre-Without inlay (preoperatief-zonder implantaat) , de pupil
- Bij Post-With inlay (postoperatief-met implantaat), het KAMRA™-implantaat.

In deze fase kan de patiënt nog steeds zo vaak knipperen als hij of zij prettig vindt.

3.6.5.5. Scherpstellen met behulp van aanwijspijltjes
Tijdens deze stap worden door de software 2 pijltjes gebruikt, een blauw pijltje dat naar het oog van de patiënt wijst, en een geel pijltje dat naar de clinicus wijst. Deze pijltjes helpen de bewegingen van de clinicus te leiden. Onthoud dat de aanwijspijltjes alleen worden getoond wanneer het oog goed gecentreerd in het assenstelsel zit.

In het begin geeft de blauwe pijl aan dat de clinicus het instrument dicht naar de patiënt moet bewegen.
Wanneer u de patiënt benadert is het van belang dat u het oog altijd goed gecentreerd houdt. Tijdens dit proces zal een groene cirkel verschijnen rond de laserreflectie. De clinicus moet de groene cirkel zo goed mogelijk gecentreerd houden, totdat hij het beste focuspunt heeft bereikt. De clinicus moet dit punt een klein stukje voorbij gaan.

Afbeelding 35. Blauwe pijl met groene cirkel dichtbij laserreflectie.
Nadat u hier voorbij bent gegaan, ziet de software dat u het beste focuspunt bereikt hebt en gepasseerd bent, waarna de blauwe pijl wordt vervangen door een gele, die in de tegenovergestelde richting wijst. De clinicus moet de richting van het instrument veranderen, weg van de patiënt bewegend.

Afbeelding 36. Gele pijl, net voordat de detectie van laserreflectie verloren gaat.
Op dit punt blijft de software de pijlen gebruiken om de juiste richting aan te geven voor het bereiken van het beste focuspunt. Maar ook de groottes, om aan te geven hoe ver het instrument van dat punt verwijderd is (hoe groter de pijl, hoe verder weg het beste focuspunt ligt).

Afbeelding 37. Gele pijl wanneer u dicht bij het beste focuspunt komt..
Wanneer de beste focus is bereikt, worden de pijlen vervangen door een groen vinkje. Wanneer deze positie is bereikt, mag u het instrument niet bewegen.

![Afbeelding 38. Groen vinkje geeft aan dat het beste focuspunt bereikt is.](image)

De patiënt kan nu vrijuit knipperen. Tijdens het focusproces wordt aangeraden om de patiënt te vragen NIET te knipperen. Knipperen kan ertoe leiden dat de software opnieuw opstart om het resultaat te berekenen.

3.6.5.6. Automatisch opslaan van afbeeldingen

Hier begint de software beelden automatisch op te slaan. Er zijn twee modussen voor het vastleggen van beelden en hieronder ziet u de parameters die deze vinden:

- **Automatische modus: de software probeert te vinden:**
 - Bij Pre-Without inlay (preoperatief-zonder implantaat): de laserreflectie, en de pupil.
Bij Post-Without inlay (postoperatief-zonder implantaat): de laserreflectie en het KAMRATM-implantaat. In sommige gevallen kunnen de pupilparameters ook gevonden worden.

- **Manuele modus**: De software probeert de laserreflectie te vinden en de clinicus zal de locatie van de pupil (pre-operatief) of het implantaat (post-operatief) handmatig markeren

Indien om u welke reden dan ook het focuspunt kwijt raakt (vinkje en groene cirkel verdwijnen) beweegt u het instrument nogmaals in de richting van de aanwijzpilten om te centreren en de best mogelijke focus te verkrijgen. Dit kan gebeuren als gevolg van een onwillekeurige beweging van het instrument door de clinicus of doordat de patiënt het hoofd beweegt.

Bij deze stap van het automatisch vastleggen van beelden wordt aanbevolen dat de patiënten zo min mogelijk knipperen.

3.6.5.6.1. Automatische modus
De software zal 3 opeenvolgende en vergelijkbare afbeeldingen vastleggen. Hierna beslist de software automatisch welke de beste van deze 3 afbeeldingen is, en deze zullen op het scherm aan de clinicus worden getoond.

3.6.5.6.2. Manuele modus
Wanneer de software eenmaal een beeld vastlegt waar de laserreflectie wordt gevonden, kan de patiënt weer normaal knipperen. Het vastgelegde beeld wordt aan de clinicus getoond, ingezoomd en met oplopende contrasten.
Afbeelding 39. Ingezoomd en gecontrasteerd beeld, met onjuiste markering voor midden en diameter pupil.

Op het ingezoomde beeld moet de clinicus het volgende markeren:

- *Pre-Without inlay (preoperatief-zonder implantaat): midden en rand pupil.*
- *Post-With inlay (postoperatief-met implantaat): midden en randen KAMRATM- implantaat.*
Om het centrum te markeren, beweegt u gewoon de muis naar het centrum, met de cirkel over de pupil (pre-operatief) of het implantaat (post-operatief). Om de diameter aan te passen, gebruikt u gewoon het muiswiel of de knoppen “+” en “-“.

Afbeelding 40. Ingezoomd en gecontrasteerd beeld met juiste markering voor midden en diameter pupil.

Wanneer de clinicus eenmaal het juiste midden en de juiste diameter heeft gevonden, klikt deze, waarna de software de resultaten van deze gedeeltelijke opname toont.
3.6.5.7. Een beeld bevestigen
De gebruiker moet de kwaliteit van het voorgestelde beeld beoordelen op grond van hoe goed de randen en gedetecteerde punten overeenstemmen met het oog van de patiënt.

3.6.5.7.1. Onacceptabel beeld
Als u het voorgestelde beeld niet goed genoeg vindt, klikt u op Discard image (beeld afwijzen), dan zorgt het programma ervoor dat u terugkeert naar “3.6.5.6. Een beeld automatisch vastleggen”.

![Afbeelding 41. Juiste pupildetectie op pre-operatieve afbeelding](image)

3.6.5.7.2. Acceptabel beeld
Als u het voorgestelde beeld goed genoeg vindt, klikt u op de knop Valid image! (acceptabel beeld!)

Het programma bewaart het beeld en gaat verder naar de volgende stap.
3.6.5.8. Vastleggen en bevestigen van nog vier beelden.
In de Manuele modus is deze stap niet vereist en daarom zal de software naar de volgende stap gaan (“3.6.5.9 Eindresultaten bevestigen”).

In de Automatische modus heeft u daarentegen op dit moment één beeld kunnen vastleggen en bevestigen, maar om een goed resultaat te garanderen heeft het programma vijf afbeeldingen nodig en kiest het degene die de daadwerkelijke staat van het oog van de patiënt het beste weergeeft.

Daarom neemt het programma u mee terug naar “3.6.5.6. Beelden automatisch vastleggen” nadat u één beeld heeft bevestigd, om verder te gaan met het proces van vastleggen en bevestigen van beelden, totdat het vijf juiste afbeeldingen heeft bereikt.

Wanneer u terug gaat naar “3.6.5.6. Beelden automatisch vastleggen” moet u er rekening mee houden dat, omdat de positie van de patiënt en het apparaat niet veranderd zouden moeten zijn, het oog van de patiënt nog steeds scherp in beeld moet zijn. Een lichte correctie van de positie van het apparaat kan nodig zijn.
Als de volgende beelden aanzienlijk minder goed zijn dan het eerste bevestigde beeld, zal het programma ze automatisch afwijzen. Daardoor zullen de vijf bevestigde beelden in hoge mate op elkaar lijken.

Wanneer u het vijfde beeld hebt bevestigd, zorgt het programma ervoor dat u naar de volgende stap gaat.

![Afbeelding 43. Vijfde preoperatieve meting](image)

3.6.5.9. Bevestigen van de eindresultaten

De patiënt hoeft nu niet meer bij het apparaat te blijven zitten, want de metingen zijn afgerond.

Wanneer u het vijfde beeld hebt bevestigd, zorgt het programma ervoor dat het definitieve beeld wordt weergeven. Dit uiteindelijke beeld wordt automatisch door het programma gekozen vanuit de set eerder door de clinicus bevestigde en geaccepteerde beelden (1 in Manuele modus of 5 in Automatische modus), en dit is statistisch gezien, degene met de meest realistische weergave.
In het definitieve beeld van preoperatieve metingen worden de volgende parameters weergeven:

- Geel: pupil en midden van de pupil
- Groen: optische as
- Rood: positie waar het KAMRA™-implantaat zou moeten worden geïmplanteerd

Afbeelding 44. Eindresultaat van een preoperatieve meting

In het definitieve beeld van postoperatieve metingen worden de volgende parameters weergeven:

- Groen: optische as
- Rood: KAMRA™-implantaat en het midden daarvan.
3.6.6. Afdrukken en exporteren van het rapport van een resultaat

Klik voor alle soorten metingen op de knop Print (afdrukken) om een volledig rapport af te drukken van de meetresultaten en de parameters.

Er wordt dan een menu weergegeven waarin u het rapport kunt afdrukken, een afdrukvoorbeeld kunt bekijken of het rapport kunt exporteren als een bestand. Het rapport kunt u exporteren als een bmp-, jpeg- of pdf-bestand. Het kan ook vanuit het scherm van het afdrukvoorbeeld worden geëxporteerd (klik op Save as (opslaan als)).

In Afbeelding 46 en de figuren daarna worden voorbeelden weergegeven van rapporten van alle soorten metingen. Ze bevatten de meest relevante informatie van de meting, inclusief de gebruikte parameters en de verkregen resultaten.
Afbeelding 46. Voorbeeld van rapport van *Scatter Meter* (verstrooingsmeter)
Afbeelding 47. Voorbeeld van rapport van Optical Quality (optische kwaliteit)
Afbeelding 48. Voorbeeld van rapport van *Pseudo Accommodation* (pseudoscherpstelling)
Afbeelding 49. Voorbeeld van rapport van Tear Film Analysis (traanvochtanalyse)
Afbeelding 50. Voorbeeld van rapport van preoperatieve Purkinje
Afbeelding 51. Voorbeeld van een postoperatieve Purkinje

Voor Scatter Meter (verstrooiingsmeter) en Optical Quality (optische kwaliteit) zijn ook volledige rapporten mogelijk, met daarin alle resultaten (ook de resultaten die bedoeld zijn voor deskundigen). Deze rapporten zijn alleen te bekijken door te
klikken op de knop More options (meer opties) van de weergaveopties, in het bijzonder in de MTF-weergave. Klik op Print complete report (volledig rapport afdrukken) om deze rapporten af te drukken.

U kunt ook rapporten genereren voor alle resultaatvergelijkingsschermen (toegankelijk via de optie Compare (vergelijken) in Database). Klik op Print complete report (volledige rapport afdrukken) om deze rapporten af te drukken.

3.7. LICENTIEBEHEER

Klik op de knop License Manager (licentiebeheer) in het hoofdmenu (Home) om de applicatie te openen voor het licentiebeheer van het systeem. Deze applicatie beheert het tegoed aan metingen van de gebruiker van HD Analyzer™ wanneer de software in de pay-per-patient-modus (betaal-per-patiënt-modus) draait.

Lees paragraaf 3.2 zorgvuldig door voor meer informatie over de verschillende modussen van de software.

Als op de knop License Manager (licentiebeheer) wordt geklikt, wordt na bevestiging van de gebruiker de software van de HD Analyzer™ afgesloten. De applicatie voor licentiebeheer wordt direct geopend.

In Afbeelding 52 wordt het hoofdscherm van deze applicatie weergegeven.
Het veld *Running mode (actieve modus)* geeft aan dat de software van de HD Analyzer™ in de actieve modus draait. Dit kan de *Pay-Per-Patient mode (betaal-per-patiënt-modus)* (of de *Free mode (gratis modus)*) zijn. In de betaal-per-patiënt-modus wordt in het veld *Available credits (beschikbaar tegoed)* aangegeven wat het tegoed aan metingen is.

Als u nieuw tegoed hebt gekocht en dat op het apparaat wilt activeren, klik dan op *Enter New Code (nieuwe code invoeren)*. Dan komt u in het scherm dat in Afbeelding 53 wordt weergegeven.
Voer de activeringscode in die u hebt gekregen na uw aankoop van tegoed op de webpagina van Visiometrics (zie paragraaf 3.2). In het voorbeeld is de code ABCD-1234-567a-lkjh ingevoerd. Klik dan op Validate Code (code bevestigen). Als de door u gegeven code ongeldig is, wordt u gevraagd om te controleren of de code van 16 cijfers en letters goed is ingevoerd. Als de door u gegeven code geldig is, wordt het nieuwe tegoed toegevoegd aan het tegoed dat u nog had en wordt er een scherm met een samenvatting weergegeven (Afbeelding 54).

Afbeelding 53. Bevestiging van de activeringscode

Afbeelding 54. Samenvatting van de bevestiging van de activeringscode
In het hoofdmenu van de applicatie (Afbeelding 52) is er ook een knop met Options (opties). Via deze knop komt u in het scherm met opties, zoals dat in Afbeelding 55 wordt weergegeven. De enige parameter die de gebruiker kan wijzigen is de taal van de applicatie voor licentiebeheer (Engels of Spaans). Door op de knop Administrative tools (beheertools) te klikken, wordt een gedeelte van de beheerparameters geactiveerd dat voor de gebruiker niet toegankelijk is. Dit gedeelte is beschermd met een wachtwoord dat niet aan de klant wordt verstrekt.

![Afbeelding 55. Opties in License Manager (licentiebeheer)](image)

Op ieder moment kan de applicatie worden verlaten door op het rode kruisje te klikken in de rechterbovenhoek van het scherm. Dan wordt de applicatie voor licentiebeheer afgesloten. De software van de HD Analyzer™ zal dan opnieuw opstarten met het bijgewerkte tegoed aan metingen (als dat is gewijzigd).

3.8. INSTELLINGEN

Klik op de knop Setup (instellingen) in het hoofdmenu (Home) om naar het scherm met instellingen van het systeem te gaan.

In afbeelding 54 ziet u het Setup Screen (Instellingenscherm). Deze kan in drie delen onderverdeeld worden:
3.8.1. Voor gebruikers zichtbare parameters:
Er zijn drie gegevensvelden die voor de gebruiker zichtbaar zijn.

- Serial number (serienummer) is het serienummer van de HD Analyzer™-unit die wordt bediend. Dit nummer kan niet door de gebruiker worden gewijzigd.

- De velden Company (bedrijf) en User (gebruiker) kunnen door de gebruiker worden gewijzigd. Company is de naam van de kliniek, het ziekenhuis, het bedrijf, enzovoort waar de apparatuur is geïnstalleerd.

- User is de naam van de gebruiker die de HD Analyzer™ bedient.

Als u op Modify (wijzigen) klikt, zal de software na bevestiging van de gebruiker opnieuw opstarten met de nieuwe waarden. De gegevens die ingevoerd zijn in de velden Company en User worden boven aan alle softwareschermen weergegeven. Alle velden die kunnen worden gewijzigd, kunnen indien gewenst ook leeg worden gelaten.
3.8.2. Knoppen voor instellingen:

In dit gedeelte vindt u drie knoppen. De huidige configuratie is opgeslagen in een bestand, dat kan worden geïmporteerd/geëxporteerd met behulp van respectievelijk de knoppen Load Config File (configuratiebestand laden) en Export Config File (configuratiebestand exporteren). Beide handelingen zijn alleen nodig bij een fout in het systeem of bij onderhoudswerkzaamheden. De gebruiker mag het configuratiebestand alleen wijzigen als hij goede instructies heeft gekregen van Visiometrics of een bevoegde persoon. Als dit bestand niet op de juiste manier wordt behandeld, zal dat leiden tot een storing van het systeem.

De gebruiker mag het configuratiebestand van de HD Analyzer™ alleen importeren of exporteren (met de knoppen Load Config File / Export Config File) als Visiometrics daarvoor uitdrukkelijk toestemming heeft gegeven. Als dit bestand niet op de juiste manier wordt behandeld, zal dat leiden tot een storing van het systeem.

De andere knop in dit gedeelte, Upgrade (upgraden), is bedoeld voor het upgraderen van de softwareversie van de HD Analyzer™. Wanneer er een upgrade beschikbaar is voor de apparatuur, stuurt Visiometrics de gebruiker het installatiebestand en de installatie-instructies. Lees deze instructies zorgvuldig door. Gewoonlijk kan de upgrade worden uitgevoerd door op Upgrade te klikken en het upgradebestand te selecteren op de locatie waar het is opgeslagen. Er zal worden gevraagd om een wachtwoord, dat van tevoren door Visiometrics wordt verstrekt. Na bevestiging van het wachtwoord, wordt de upgrade uitgevoerd. Volg te allen tijde de instructies die u samen met het upgradebestand zijn toegestuurd.

3.8.3. “Snelle controle”-proces

Het “Snelle controle”-proces moet uitgevoerd worden na de eerste installatie en iedere keer na het verplaatsen naar een nieuwe werkplek.
Indien de waargenomen waarden tijdens dit proces significant afwijken van de fabrieksinstellingen, toont de software een waarschuwing. In dit geval moet een speciaal door Visiometrics getrainde technicus een volledige ijking met speciale apparatuur uitvoeren.

Met het “Snelle proces” kan de gebruiker de focuswaarden en laseropstelling controleren. U hebt een extra instrument nodig, dat samen met het apparaat is geleverd (1.4.3.2 Extra instrument voor “Snelle Controle”).

Tijdens het “Snelle Controle”-proces moet het licht aan dezelfde eisen voldoen als onder normale omstandigheden.

Het proces bestaat uit 3 stappen:
- Scherpstellen…
- Nieuwe focuswaarden zoeken…
- Laser centreren…

3.8.3.1. Scherpstellen…
Ten eerste moet de gebruiker:
- Het extra instrument op de kinsteunstangen plaatsen, zoals in de volgende afbeelding wordt getoond:
Afbeelding 57: Extra instrument in de kinsteen.

- Plaats het instrument zo dicht mogelijk op de kinsteen.
- Klik op “Snelle Controle”.
- Centreer het patroon in de afbeelding:
 - Het maakt niet uit of de afbeelding van het patroon onscherp is.
 - Het maakt niet uit of de buitenste rechthoek rood is.
- Beweeg de kop van het instrument ver van de kinsteen:
 - De afbeelding van het patroon wordt duidelijker.
 - Op een gegeven moment wordt de rode rechthoek groen (mogelijk niet stabiel, wisselend naar rood naar groen).
- Blijf de kop van het instrument langzaam van de kinsteen weg bewegen:
 - Op een gegeven moment zal de rode rechthoek rood blijven.
- Verander vervolgens de richting, waarbij u de kop van het instrument heel langzaam tot dicht bij de kinsteen beweegt:
 - Wanneer de groene rechthoek groen blijft, houdt u het instrument stil.
 - Klik op de knop ‘Focused’ (Scherpgesteld) en ga naar de volgende stap.
Afbeelding 58: Patroon in het extra instrument goed scherpgesteld.
3.8.3.2. Nieuwe focuswaarden zoeken…
Bij de tweede stap berekent de software een interne parameter, met behulp van 100 vastgelegde patroonafbeeldingen.

Nadat er 100 afbeeldingen zijn vastgelegd, indien de afbeelding goed scherp was, moet de in het patroon gevonden pupilgrootte zeer dicht bij de 8 mm liggen, maar maakt u zich geen zorgen wanneer dit niet het geval is. Wat echt van belang is, is dat het patroon goed scherpgesteld is tijdens de eerste stap.
Wacht tot het proces voltooid is en klik op “Save focus” (Focus opslaan) om de resultaten op te slaan. Bedenk dat het veranderen van deze parameter de eerder berekende parameters niet beïnvloedt. Het zal echter wel de nauwkeurigheid van in de toekomst vast te leggen beelden beïnvloeden. Als u de resultaten niet wilt accepteren, klikt u op de knop “Focus overslaan”. U gaat in ieder geval naar de volgende stap.

3.8.3.3. Laserspot centreren...

In de derde stap zal de software de infrarode LEDs uitschakelen en de laser aandoen. Vervolgens ziet u hoe de lasercron op het extra instrument inwerkt.
U moet het assenstelsel met behulp van de pijlknoppen verplaatsen om de as met de laserspot te centreren. Bij deze stap negeert u het patroon van het extra instrument.

Wanneer u klaar bent, klikt u op “Save position” (Positie opslaan). Of klik op “Skip centering” (Centreren overslaan) als u de laserpositie niet aan wilt passen.

Nu geeft de software u informatie over de veranderingen aan de configuratie (geen, focuswaarden en/of laserpositie). U moet weer bevestigen als u het eens bent met de eventuele veranderingen.

3.8.4. Hardware instellingen:
Dit gedeelte is beschermd met een wachtwoord, dat de fabrikant alleen zal verstrekken als er onderhoudswerkzaamheden aan het apparaat moeten worden uitgevoerd. Dit wachtwoord wordt gewoonlijk niet verstrekt om te voorkomen dat de configuratieparameters van het apparaat per ongeluk worden gewijzigd.

Alleen bevoegd personeel krijgt toegang tot het gedeelte voor hardware-instellingen. Als bepaalde parameters worden gewijzigd, kan dit leiden tot storing van de apparatuur.
3.9. BACK-UPS MAKEN

Klik op de knop *Backup (back-up maken)* in het hoofdmenu (*Home*) om een back-up te maken van de database. U moet de gewenste locatie en map selecteren waar de back-up van de gegevens moet worden opgeslagen.

Het systeem maakt dan een back-up van alle bestanden met de gegevens van de patiënten en de metingen die bij hen zijn uitgevoerd. Ook van het Microsoft Access™-databasebestand en van alle vastgelegde beelden wordt een back-up gemaakt.

We raden aan regelmatig een back-up te maken. Hou er rekening mee dat de back-up veel schijfruimte kan innemen (de back-up kan meerdere gigabytes groot zijn). Controleer dus eerst of er genoeg vrije schijfruimte is in de map waarin u de back-up wilt opslaan.
4. VOORBEELDEN VAN METINGEN

4.1. NORMAAL OOG

In Afbeelding 60 wordt een rapport weergegeven van de resultaten van een meting aan een jong en gezond oog.

Merk op dat het double-pass-beeld scherp en rond is. Dit betekent dat de optische degradatie door aberraties en intraoculaire verstrooiing zeer klein is. Zoals te
verwachten is, wordt dit tevens bevestigd door de hoge waarde van de Predicted VA (voorspelde visus) (weinig aberraties) en de lage OSI-waarde (weinig verstrooiing).

Met betrekking tot de simulatie van het op het netvlies geprojecteerde beeld is er weinig of geen degradatie ten opzichte van het originele beeld.

4.2. OOG MET STAAR

In Afbeelding 61 wordt een voorbeeld weergegeven van een rapport van de resultaten van een oog met staar.

Merk op dat het double-pass-beeld veel groter is dan bij een normaal oog. Dit betekent dat de energie (het licht) over het netvlies wordt verspreid. Dat is het gevolg van de intraoculaire verstrooiing (het licht wordt in alle richtingen verspreid). U kunt dan een hoge OSI-waarde verwachten. Bovendien zal de Predicted VA (voorspelde visus) laag zijn.

De simulatie van het op het netvlies geprojecteerde beeld vertoont aanzienlijke degradatie ten opzichte van het originele beeld als gevolg van intraoculaire verstrooiing. Door de verstrooiing van het licht vermindert het totale contrast in het netvliesbeeld. Dit is het bekende sluiereffect dat door staar wordt veroorzaakt. Andere effecten zoals schitteringen of halo’s worden niet in dit beeld gesimuleerd, en ze zijn daarin dus ook niet te verwachten.
Na een LASIK-behandeling bestaat er enige onzekerheid over de echte conditie van het oog. Ook al ziet de patiënt goed, toch kan er sprake zijn van nieuwe aberraties of enige verstrooing op het hoornvlies. Voer een meting uit bij de patiënt om te controleren of de behandeling succesvol is. In Afbeelding 62 wordt een voorbeeld weergegeven van een rapport van de resultaten van een oog na een LASIK-operatie. In dit geval is te zien dat de kwaliteit van het zicht zeer bevredigend is, want het double-pass-beeld is rond en de grootte ervan is acceptabel. De OSI-waarde is laag en de Predicted VA (voorspelde visus) is hoog, zoals dat bij een succesvolle behandeling ook zo zou moeten zijn.
Afbeelding 62. Oog na een succesvolle LASIK-operatie

In Afbeelding 63 wordt echter een voorbeeld weergegeven van een operatie waarbij de verwachte resultaten niet zijn behaald. Het double-pass-beeld is groter als gevolg van aberraties en enige verstrooiing. De OSI-waarde is groter dan in het eerste voorbeeld (meer verstrooiing) en de Predicted VA (voorspelde visus) lager.

In het tweede voorbeeld zijn de simulaties van het op het netvlies geprojecteerde beeld ook waziger.
Afbeelding 63. Oog na een niet-succesvolle LASIK-operatie
5. FOUTOPLOSSING

Wanneer er een fout optreedt, zorgt de software van de HD Analyzer™ ervoor dat er een foutmeldingen wordt weergegeven. Het systeem kan de volgende foutmeldingen weergeven:

5.1. Foutmeldingen

<table>
<thead>
<tr>
<th>Code</th>
<th>Foutmelding</th>
<th>Oorzaak</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The program requires a screen resolution of 1366x768, 1366x800, 1280x768 or 1280x800. The current resolution is not valid, so the program must shut down. Try to change your screen resolution.</td>
<td>Voor het programma is een schermresolutie vereist van 1366x768, 1366x800, 1280x768 of 1280x800. Deze fout doet zich voor wanneer er een andere schermresolutie wordt gebruikt. De gebruiker moet de schermresolutie aanpassen.</td>
</tr>
<tr>
<td>6</td>
<td>The program initialization has failed. The program will shut down.</td>
<td>Om de een of andere reden (te weinig geheugen, niet genoeg vrije schijfruimte, enzovoort) kan de software het apparaat niet initialiseren. Neem contact op met Visiometrics.</td>
</tr>
<tr>
<td>21</td>
<td>The acquisition has failed</td>
<td>Om de een of andere reden kon de meting niet worden afgerond. Probeer het opnieuw.</td>
</tr>
<tr>
<td>22</td>
<td>The selffocusing process has failed. Please check if the subjective refraction you have entered is correct and try again</td>
<td>Om de een of andere reden kon de meting van de Objective Refraction (objectieve refractie) niet worden afgerond. Controleer de ingevoerde subjectieve refractie en probeer het opnieuw.</td>
</tr>
<tr>
<td>25</td>
<td>A Thorner movement has failed</td>
<td>Er is een hardwarefout opgetreden in het interne systeem voor compensatie van de sferische refractie. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics.</td>
</tr>
<tr>
<td>26</td>
<td>The pupil motor has failed</td>
<td>Er is een hardwarefout opgetreden in het interne systeem voor de kunstmatige pupil. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics.</td>
</tr>
</tbody>
</table>
Hoofdstuk 5: Foutoplossing

<p>| 27 | The shutter motor has failed | Er is een hardwarefout opgetreden in de sluiter van het systeem. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics. |
| 28 | The laser has failed | Er is een hardwarefout opgetreden in de laser van het systeem. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics. |
| 29 | The anti-speckle system has failed | Er is een hardwarefout opgetreden in het interne systeem voor vibraties. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics. |
| 30 | The LEDS have failed | Er is een hardwarefout opgetreden in de leds van het systeem. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics. |
| 32 | Error in the video signal | Er komt geen signaal van de camera's van het systeem. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics. |
| 33 | The images could not be opened | De beelden voor de geselecteerde meting zijn niet op de schijf gevonden. Neem contact op met Visiometrics als deze fout herhaaldelijk optreedt. |
| 34 | Error while processing the images | Er is een fout opgetreden bij het verwerken van de beelden. Neem contact op met Visiometrics als deze fout herhaaldelijk optreedt. |
| 36 | The program has not captured enough images for their process. Please try again. | Om de een of andere reden kon de meting niet worden afgerond. (Sommige beelden zijn niet vastgelegd). Probeer het opnieuw. |
| 39 | There is no patient selected. | Er is geen patiënt geselecteerd. Selecteer een patiënt |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>There is no acquisition selected</td>
<td>Er is geen meting geselecteerd. Selecteer een meting.</td>
</tr>
<tr>
<td>41</td>
<td>There is more than one acquisition selected.</td>
<td>Er is meer dan een meting geselecteerd. Selecteer maximaal één meting.</td>
</tr>
<tr>
<td>46</td>
<td>The system's cameras could not be detected. Check the connections.</td>
<td>De software kan de camera's van het apparaat niet detecteren. De gebruiker moet de verbinding tussen de computer en het apparaat controleren.</td>
</tr>
<tr>
<td>47</td>
<td>One of the system's cameras could not be detected. Check the connections.</td>
<td>De software kan één van de camera's van het apparaat niet detecteren. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics.</td>
</tr>
<tr>
<td>49</td>
<td>Communication failure with camera</td>
<td>Er is een communicatieprobleem met de camera's van het systeem. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics.</td>
</tr>
<tr>
<td>50</td>
<td>There is not enough energy reaching the camera. The images could not be recorded.</td>
<td>Het systeem heeft het maximumlaservermogen bereikt, maar dat is nog steeds niet genoeg om het oog van de patiënt te meten. Probeer het opnieuw.</td>
</tr>
<tr>
<td>54</td>
<td>Error while updating the credit count. The program will shut down.</td>
<td>Het tegoed kon niet worden afgetrokken. Neem contact op met Visiometrics.</td>
</tr>
<tr>
<td>56</td>
<td>The License Manager software was not found.</td>
<td>De licentiebeheerssoftware kon niet worden gevonden. Neem contact op met Visiometrics.</td>
</tr>
</tbody>
</table>

5.2. Waarschuwingsberichten

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The program will run without hardware</td>
<td>De hardware is niet aangesloten of werkt niet.</td>
</tr>
<tr>
<td>The program has detected a problem with the hardware and will shut down.</td>
<td>Er is een hardwarefout opgetreden en het programma wordt afgesloten. De gebruiker moet het apparaat uitschakelen en vervolgens weer aanzetten om te kijken of de fout opnieuw optreedt. Als dat het geval is, neem dan contact op met Visiometrics.</td>
</tr>
<tr>
<td>You can’t perform new measurements. Visit our website www.visiometrics.com if you want to get more credits.</td>
<td>De gebruiker heeft geen tegoed meer. De gebruiker moet nieuw tegoed kopen en dit tegoed activeren met behulp van de License Manager (de licentiebeheertool).</td>
</tr>
<tr>
<td>Issue</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>The MTF could not be computed</td>
<td>De kwaliteit van de beelden is zo slecht dat de MTF-functie niet kon worden bewerkt. Neem contact op met Visiometrics als deze fout herhaaldelijk optreedt.</td>
</tr>
<tr>
<td>The pupil diameter of the patient could not be measured during the process. This value will be set to zero.</td>
<td>Omdat de verlichting niet optimaal was, kon de diameter van de pupil van de patiënt niet worden gemeten. Probeer het opnieuw.</td>
</tr>
<tr>
<td>At least one of the spherical refractions is out of range. In case of measuring that eye, please correct it with trial lenses and choose 'Total correction' in the Correction field in the measurement screen.</td>
<td>De ingevoerde sferische refractie is te groot. De refractie moet worden gecompenseerd met proeflenzen of de correctiemiddelen van de patiënt zelf (contactlenzen of bril).</td>
</tr>
<tr>
<td>At least one of the cylindrical refractions is out of range. In case of measuring that eye, please correct it with trial lenses and choose 'Astig. correction' or 'Total correction' in the Correction field in the measurement screen.</td>
<td>De ingevoerde cilindrische refractie is te groot. De refractie moet worden gecompenseerd met proeflenzen of de correctiemiddelen van de patiënt zelf (contactlenzen of bril).</td>
</tr>
<tr>
<td>You have typed an incorrect password</td>
<td>Het ingevoerde wachtwoord voor de toegang tot de instellingen is onjuist. Probeer het opnieuw.</td>
</tr>
</tbody>
</table>

De lijst met fouten is opgenomen in het bestand C:/Program Files (x86)/Visiometrics/HD_Analyzer/log/error.log.

Als een fout optreedt, sluit dan de applicatie af, schakel het apparaat uit en start daarna de pc en de HD Analyzer™ opnieuw op. Als een fout herhaaldelijk optreedt, controleer dan de verbindingen tussen de computer en de hardware en neem contact op met VISIOMETRICS.
6. FABRIKANT

VISIOMETRICS, S.L.
c/ Argenters, 8 - Edifici nº 3
Parc Tecnològic del Vallès
08290 Cerdanyola del Vallès
Barcelona (Spanje)
Tel.: (+34) 935 824 501

Fabrikantnummer: 5.122-PS
Onze website: www.visiometrics.com
Voor vragen aan de verkoopafdeling: customerservice@visiometrics.com
Technische ondersteuning: technicalservice@visiometrics.com

Dit symbool op het product of de verpakking geeft aan dat het product niet bij uw gewone afval kan worden gedaan. U dient oude apparaten in te leveren bij een daarvoor bestemd verzamelpunt voor de recycling van oude elektrische en elektronische apparaten. Het apart verzamelen en recyclen van uw oude apparaten helpt bij het behoud van natuurlijke hulpbronnen en zorgt ervoor dat ze worden gerecycled op een manier waarbij de menselijke gezondheid en het milieu worden beschermd. Neem contact op met de plaatselijke dienst voor afvalverwerking of de distributeur bij wie u het product hebt gekocht voor meer informatie over de plaatsen waar u oude apparaten kunt inleveren voor recycling.
7. REGELGEVING INFORMATIE

| Australian Sponsor | Emergo Australia
| | Level 20
| | Tower II, Darling Park
| | 201 Sussex Street
| | Sydney, NSW 2000
| | Australia |
Als op uw computer MS Access™ is geïnstalleerd, kunt u de database van de HD Analyzer™ direct openen.

Een kopie van het databasebestand vindt u in de folder C:/Program Files (x86)/Visiometrics/HD_Analyzer / PATIENTS BD. Omdat het een kopie is, bestaat niet het gevaar dat bestaande gegevens worden beschadigd of verwijderd. Elke keer dat de software van de HD Analyzer™ wordt afgesloten, wordt er nieuwe kopie van het databasebestand (BD_PATIENTS.mdb) gemaakt. We raden u ten sterkste aan om dit bestand niet te openen wanneer de software draait.

Wanneer u BD_PATIENTS.mdb opent, ziet u twee tabellen:
- Patients_Table (patiëntentabel)
- Acquisitions_Table (metingentabel)

8.1. PATIENTS_TABLE (patiëntentabel)

In deze tabel staan de persoonlijke gegevens van de patiënten, die zijn ingevoerd toen een nieuw patiëntendossier werd aangemaakt.

De tabel bevat de volgende velden:

- **Id:** Automatisch gegenereerd exclusief
 identificatienummer van de patiënt; voor intern gebruik
 in het systeem
- **NAME:** De naam van de patiënt
- **SURNAME1:** De achternaam van de patiënt
- **REFERENCE:** het nummer van het dossier van de patiënt; dit is een
 verplicht veld
- **DATE_OF_BIRTH:** geboortedatum
- **SEX:** geslacht
- **ADDRESS:** adres
CITY stad
ZIP postcode
COUNTRY land
PHONE telefoonnummer
E_MAIL e-mail
OBSERVATIONS: opmerkingen
OD_Sph: sferische refractie rechteroog
OD_Cyl: cilindrische refractie rechteroog
OD_Axis: as rechteroog
OS_Sph: sferische refractie linkeroog
OS_Cyl: cilindrische refractie linkeroog
OS_Axis: as linkeroog

De laatste zes velden zijn geen berekende metingen, maar gegevens die de gebruiker heeft ingevoerd tijdens het invullen van het dossier van de patiënt.

8.2. ACQUISITIONS_TABLE (metingentabel)

De velden in deze tabel bevatten gegevens over metingen. Elke registratie betreft één meting van de mogelijke soorten metingen (Purkinje, Scatter Meter (verstrooingsmeter), Optical Quality (optische kwaliteit), Pseudo Accommodation (pseudoscherpstelling) en Tear Film Analysis (traanvochtanalyse)).

Id_Acq: automatisch gegenereerd exclusief identificatienummer van de meting; voor intern gebruik in het systeem
FK_Id_Patient: identificatienummer van de patiënt bij wie de meting is uitgevoerd; dit nummer is hetzelfde als het identificatienummer in de patiëntentabel en stelt ons in staat om de metingentabel daaraan te koppelen
DATE, HOUR: datum en tijdstip van de meting
OS, OD: respectievelijk linker- en rechteroog
SPH, CYL, AXIS: sferische en cilindrische refractie en astigmatische as die door de gebruiker zijn ingevoerd in de velden “Sph”, “Cyl” en “Axis” in het hoofdscherm voordat de meting werd uitgevoerd
BCVA, UCVA: de gezichtsscherpte bij respectievelijk de beste correctie (Best Corrected Visual Acuity) en zonder correctie (Uncorrected Visual Acuity); deze gegevens zijn door de gebruiker ingevuld voordat de meting werd uitgevoerd.

REFERENCE_SPH_REFRAC: correctie van de sferische refractie die tijdens de meting is toegepast.

AP, NP: diameter in millimeters van respectievelijk de kunstmatige pupil (diafragma) en de natuurlijke pupil.

NOTES: de opmerkingen die zijn ingevoerd in het veld “Acquisition notes” (“opmerkingen bij meting”) in het scherm met resultaten.

BESTFOCUS: de waarde van de optimale sferische correctie die is verkregen door het meten van de Objective Refraction (objectieve refractie).

WIDTH_PROFILE_1/2: profielbreedte op halve hoogte.

WIDTH_PROFILE_1/10: profielbreedte op 10% hoogte.

MTF_CUT_OFF: MTF-kantelfrequentie.

STREHL RATIO: berekende Strehlverhouding.

VA_100, VA_20 en VA_9: geschatte decimale visus bij verschillende contrasten: 100%, 20% en 9%.

OQAS_Value_100, OQAS_Value_20 en OQAS_Value_9: OQAS value (OQAS-waarde) bij verschillende contrasten: 100%, 20% en 9%.

Type_Num: 1, 2, 3, 4 of 5; houdt verband met het volgende veld.

Type: Measurement type (soort meting):
1 = Opt. Qlt (Optical Quality (optische kwaliteit))
2 = SCT (Scatter Meter (verstrooiingsmeter))
3 = Pseudo Acc (Pseudo Accommodation (pseudoscherpstelling))
4 = Wordt niet gebruikt
5 = Tear Film (Tear Film Analysis (traanvochtanalyse))

Corr_Type_Num: 0, 1 of 2; houdt verband met het volgende veld.

Corr_Type: het soort correctie dat tijdens de meting is toegepast:
0 = Geen correctie
1 = Astigmatische correctie
2 = Volledige correctie.

NImag: aantal vastgelegde beelden.
NImag_Acc_Each: aantal verwerkte beelden voor elke fase van de pseudoscherpstelling (*Pseudo Accommodation*).
COMPUTED IMAGES: geeft aan welke van de zes beschikbare beelden zijn gebruikt voor berekeningen de laatste keer dat de meting is weergegeven.
OAR: OQAS™-scherpstellingsbereik
OSI: objectieve verstrooiingsindex
Refrac_Acc_Per_1: wordt niet gebruikt
Refrac_Acc_Per_2: wordt niet gebruikt
AR: wordt niet gebruikt
Time_Each_Image_TearFilm: tijd tussen de beelden voor de *Tear Film Analysis* (traanvochtanalyse)
TearFilm_OSI: tijdstip waarop de beelden voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_OSI: de OSI-waarde van de beelden die voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_Central_Energy: de energie in het midden van de beelden die voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_Peripheral_Energy: de energie aan de rand van de beelden die voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_VA: de geschatte visus voor de beelden die voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_MTFcutoff: de MTF-kantelfrequentie voor de beelden die voor de *Tear Film Analysis* (traanvochtanalyse) zijn vastgelegd
TearFilm_MeanOSI: de gemiddelde OSI-waarde voor de *Tear Film Analysis* (traanvochtanalyse)
TearFilm_StdevOSI: de standaarddeviatie van de OSI voor de *Tear Film Analysis* (traanvochtanalyse)
PKJ_IsPreOperation: Kijkt alleen naar Purkinje- eigenschappen. Het slaat op of deze pre-operatief of postoperatief zijn.
PKJ_MicrasPerPixel: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de verhouding pixel-micrometers in het bijbehorende beeld op.
PKJ_PupilDiameter: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de diameter van de puil op PKJ_PkjVsPupil_Length: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de afstand, in pixels, tussen de
Purkinje en het midden van de pupil op. PKJ_PkjVsPupil_Angle: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de hoek tussen Purkinje en het midden van de pupil op.
PKJ_PkjVsPupil_X: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de bestaande afstand, in micrometers, op de X-as, tussen Purkinje en het midden van de pupil op.
PKJ_PkjVsPupil_Y: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de bestaande afstand, in micrometers, op de Y-as, tussen Purkinje en het midden van de pupil op.
PKJ_InlayVsPupil_X: Kijkt alleen naar Purkinje post-operatief. Het slaat de bestaande afstand, in micrometers, op de X-as, tussen het midden van het KAMRA™-implantaat en het midden van de pupil op.
PKJ_InlayVsPkj_X: Kijkt alleen naar Purkinje post-operatief. Het slaat de bestaande afstand, in micrometers, op de X-as, tussen het midden van het KAMRA™-implantaat en Purkinje op.
PKJ_InlayVsPkj_Y: Kijkt alleen naar Purkinje post-operatief. Het slaat de bestaande afstand, in micrometers, op de Y-as, tussen het midden van het KAMRA™-implantaat en Purkinje op.
PKJ_Pupil_PixelCentroX: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de pixel, op de x-as, waar het centrum van de pupil is, op.
PKJ_Pupil_PixelCentroY: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de pixel, op de Y-as, waar het centrum van de pupil is, op.
PKJ_Pupil_PixelRadio: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de radius van de pupil, in pixels, op.
PKJ_Laser_PixelCentroX: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de pixel op de X-as op, waar het midden van de Purkinje is.
PKJ_Laser_PixelCentroY: Kijkt alleen naar Purkinje- eigenschappen. Het slaat de pixel op de y-as op, waar het midden van de Purkinje is.
PKJ_Inlay_PixelCentroX: Kijkt alleen naar Purkinje post-operatief. Het slaat de pixel op de X-as op, waar het midden van het KAMRA™-implantaat is.
PKJ_Inlay_PixelCentroY: Kijkt alleen naar Purkinje post-operatief. Het slaat de pixel op de Y-as op, waar het midden van het KAMRA™-implantaat is.
PKJ_Inlay_PixelRadio: Kijkt alleen naar Purkinje post-operatief. Het slaat de radius van het KAMRA™-implantaat in pixels op.
8.3. SYMBOLEN

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waarschuwing</td>
</tr>
<tr>
<td></td>
<td>Recycling van elektrische producten</td>
</tr>
<tr>
<td></td>
<td>CE Markering</td>
</tr>
<tr>
<td></td>
<td>Serienummer</td>
</tr>
<tr>
<td></td>
<td>Toepasselijk onderdeel</td>
</tr>
<tr>
<td></td>
<td>Klasse II apparaat</td>
</tr>
<tr>
<td></td>
<td>Laserstraling</td>
</tr>
<tr>
<td></td>
<td>Breekbaar</td>
</tr>
<tr>
<td></td>
<td>Droog houden</td>
</tr>
<tr>
<td></td>
<td>In verticale positie houden</td>
</tr>
<tr>
<td></td>
<td>Lees de gebruiksaanwijzing</td>
</tr>
</tbody>
</table>

9. ELEKTROMAGNETISCHE IMMUNITEIT
Advies en verklaring van de fabrikant – ELEKTROMAGNETISCHE IMMUNITEIT

De HD Analyzer™ is geschikt voor gebruik in de elektromagnetische omgeving die hieronder wordt gespecificeerd. De klant of de gebruiker van de HD Analyzer™ moet ervoor zorgen dat het apparaat in een dergelijke omgeving wordt gebruikt.

Immunitetest

<table>
<thead>
<tr>
<th>Testniveau IEC 60601</th>
<th>Nalevingsniveau</th>
<th>Elektromagnetische omgeving - advies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draagbare en mobiele apparatuur voor RF-communicatie moet niet dichter bij de HD Analyzer™, inclusief de kabels, worden gebruikt dan de aanbevolen minimumafstand die is berekend met de toepasselijke vergelijking voor de frequentie van de zender.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanbevolen minimumafstand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geleide RF-emissies IEC 61000-4-6</td>
<td>3 Vrms 150 kHz tot 80 MHz buiten ISM banden</td>
<td>d= 1,17 ((\text{P})^{1/2})</td>
</tr>
<tr>
<td>Uitgestraalde RF-emissies IEC 61000-4-3</td>
<td>10 V/m 80 MHz tot 2,5 GHz</td>
<td>d= 4 ((\text{P})^{1/2})</td>
</tr>
</tbody>
</table>

waarbij P het maximumzendvermogen van de zender in watts (W) is volgens de fabrikant van de zender en d de aanbevolen minimumafstand in meters (m).

De veldsterkte van vaste RF-zenders, zoals vastgesteld tijdens een elektromagnetisch onderzoek op de betreffende locatie, moet voor elk frequentiebereik lager zijn dan het betreffende nalevingsniveau. Interferentie kan optreden in de buurt van apparatuur met het volgende symbool:

Opmerking 1: bij 80 Mhz en 800 MHz is het hogere frequentiebereik van toepassing.

Opmerking 2: deze richtlijnen zijn mogelijk niet in alle situaties van toepassing. De voortplanting van elektromagnetische straling wordt beïnvloed door absorptie en reflectie door structuren, objecten en mensen.

\(a\) De ISM-banden (ISM: Industrial, Scientific, and Medical: industrieel, wetenschappelijk en medisch) tussen 150 kHz en 80 MHz zijn de banden van 6,765 MHz tot 6,795 MHz, van 13,553 MHz tot 13,567 MHz, van 26,957 MHz tot 27,283 MHz en van 40,66 MHz tot 40,70 MHz.

\(b\) De nalevingsniveaus voor de ISM-frequentiebanden tussen 150 kHz en 80 MHz en voor het frequentiebereik van 80 MHz tot 2,5 GHZ zijn bedoeld om de kans te verkleinen dat mobiele/draagbare communicatieapparatuur interferentie veroorzaakt als de apparatuur per ongeluk wordt meegenomen naar plaatsen waar patiënten worden behandeld. Daarom wordt een extra factor 10/3 toegepast bij het berekenen van de aanbevolen minimumafstand voor zenders in deze frequentiebereiken.

\(c\) De veldsterkte van vaste zenders, bijvoorbeeld basissatellieten voor (mobiele/draadloze) telefoons en mobiltelefoons en zendstations van radioamateurs of voor AM- en FM-radio en televisie kunnen niet met nauwkeurigheid theoretisch worden voorspeld. Om de elektromagnetische straling van vaste RF-zenders vast te stellen, moet een elektromagnetisch onderzoek op de betreffende locatie worden overwogen. Als de gemeten veldsterkte buiten de afgeschermde locatie waarin de HD Analyzer™ wordt gebruikt, groter is dan voornoemd toepasselijk RF-nalevingsniveau, moet worden gecontroleerd of de HD Analyzer™ normaal functioneert. Als afwijkend gedrag wordt waargenomen, kunnen extra maatregelen vereist zijn, zoals het verplaatsen van het apparaat.

\(d\) In het frequentiebereik van 150 kHz tot 80 MHz moet de veldsterkte minder zijn dan 3 V/m.
De HD Analyzer™ is bedoeld voor gebruik in een elektromagnetische omgeving waarin de verstoring door RF-straling wordt gecontroleerd. De klant of gebruiker van de HD Analyzer™ kan elektromagnetische interferentie helpen voorkomen door de hieronder vermelde aanbevolen minimumafstand in acht te nemen tussen draagbare en mobiele RF-communicatieapparatuur (zenders) en de HD Analyzer™. Deze afstand is afhankelijk van het maximumzendvermogen van de communicatieapparatuur.

Optimaal minimumafstand op grond van de frequentie van de zender in meters (m)

<table>
<thead>
<tr>
<th>Opgegeven maximumzendvermogen van de zender in watts (W)</th>
<th>Minimumafstand op grond van de frequentie van de zender in meters (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 kHz tot 80 MHz buiten ISM-banden</td>
</tr>
<tr>
<td></td>
<td>(d = 1,17\sqrt{P})</td>
</tr>
<tr>
<td>0,01</td>
<td>0,17</td>
</tr>
<tr>
<td>0,1</td>
<td>0,37</td>
</tr>
<tr>
<td>1</td>
<td>1,17</td>
</tr>
<tr>
<td>10</td>
<td>3,70</td>
</tr>
<tr>
<td>100</td>
<td>11,7</td>
</tr>
</tbody>
</table>

Voor zenders met een opgegeven maximumzendvermogen dat hierboven niet wordt vermeld, kan de aanbevolen minimumafstand \(d\) in meters (m) worden geschat door de toepasselijke vergelijking voor de frequentie van de zender te gebruiken, waarin \(P\) het opgegeven maximumzendvermogen van de zender in watts (W) is volgens de fabrikant van de zender.

Opmerking 1: bij 80 MHz en 800 MHz is het hogere frequentiebereik van toepassing.

Opmerking 2: de ISM-banden (ISM: Industrial, Scientific, and Medical: industrieel, wetenschappelijk en medisch) tussen 150 kHz en 80 MHz zijn de banden van 6,765 MHz tot 6,795 MHz, van 13,553 MHz tot 13,567 MHz, van 26,957 MHz tot 27,283 MHz en van 40,66 MHz tot 40,70 MHz.

Opmerking 3: er wordt een extra factor 10/3 toegepast bij het berekenen van de aanbevolen minimumafstand voor zenders in de ISM-frequentiebanden tussen 150 kHz en 80 MHz en voor het frequentiebereik van 80 MHz tot 2,5 GHZ om de kans te verkleinen dat mobiele/draagbare communicatieapparatuur interferentie veroorzaakt als de apparatuur per ongeluk wordt meegenomen naar plaatsen waar patiënten worden behandeld.

Opmerking 4: deze richtlijnen zijn mogelijk niet in alle situaties van toepassing. De voortplanting van elektromagnetische straling wordt beïnvloed door absorptie en reflectie door structuren, objecten en mensen.